Phytochemical composition and biological activity of Physalis spp.: A mini-review Phytochemical composition and biological activity of Psysalis...
Main Article Content
Abstract
The main objective of this mini-review was to synthesize recent data about the phytochemical composition, the nutritional properties, and the biological and pharmacological activities of a now cosmopolitan genus, Physalis (Solanaceae), being in the focus of intensive research over the last two decades. Six Physalis species with nutritional and pharmacological promise are considered in particular – P. peruviana L., P. philadelphica Lam., P. ixocarpa Brot. ex Horm., P. angulata L., P. pubescens L., and P. alkekengi L. Summarized contemporary data on the metabolite profile and the biological activities of Physalis species support their century-long use in traditional medicine and human nutrition. The fruit represent a rich source of minerals, vitamins, fibers, carotenoids, proteins, fructose, sucrose esters, pectins, flavonoids, polyphenols, polyunsaturated fatty acids, phytosterols and many other beneficial nutrients. Individual phytochemicals and complex fractions isolated from Physalis plants demonstrate various biological and pharmacological activities, the most promising of which include antimicrobial, antioxidant, anti-diabetic, hepato-renoprotective, anti-cancer, anti-inflammatory, immunomodulatory and others. Most of these activities are associated with the presence of flavonoids, phenylpropanoids, alkaloids, physalins, withanolides, and other bioactive compounds. The accumulated data disclose the potential of Physalis spp. as highly functional foods, as profitable crops for many regions over the world, and as sources of valuable secondary metabolites for phytopharmacy, novel medicine and cosmetics. Information provided by this review is also important for a more intensive promotion of Physalis species in Bulgaria and for future studies on their composition and benefits.
Article Details
References
Bahmani M., Rafieian-Kopaei M., Naghdi N., Nejad A. S. M., Afsordeh O. Physalis alkekengi: A review of its therapeutic effects. Journal of Chemical and Pharmaceutical Sciences, 2016, 9(3): 1472-1475.
Bazalar Pereda M.S., Nazareno M.A., Viturro C.I. Nutritional and antioxidant properties of Physalis peruviana L. fruits from the Argentinean Northern Andean region. Plant Foods for Human Nutrition, 2019, 74(1): 68-75 https://doi.org/10.1007/s11130-018-0702-1
Chang S. K., Alasalvar C., Shahidi F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects – A comprehensive review. Critical Reviews in Food Science and Nutrition, 2019, 59(10): 1580-1604 https://doi.org/10.1080/10408398.2017.1422111
Chen L.-X., Xia G.-Y., Liu Q.-Y., Xie Y.-Y., Qiu F. Chemical constituents from the calyces of Physalis alkekengi var. franchetii. Biochemical Systematics and Ecology, 2014, 54: 31-35 https://doi.org/10.1016/j.bse.2013.12.030
Chen L. X., Xia G. Y., He H., Huang J., Qiu F., Zi X. L. New withanolides with TRAIL-sensitizing effect from Physalis pubescens L. RSC Advances, 2016, 6(58): 52925-52936 https://doi.org/10.1039/C6RA07031K
Choi J. K., Murillo G., Su B. N., Pezzuto J. M., Kinghorn A. D., Mehta R. G. Ixocarpalactone A isolated from the Mexican tomatillo shows potent antiproliferative and apoptotic activity in colon cancer cells. The FEBS Journal, 2006, 273: 5714-5723 https://doi.org/10.1111/j.1742-4658.2006.05560.x
Cirigliano A., Colamarino I., Mareggiani G., Bado S. Biological effects of Physalis peruviana L. (Solanaceae) crude extracts and its major withanolides on Ceratitis capitata Wiedemann (Diptera: Tephritidae), Boletín de Sanidad Vegetal Plagas, 2008, 34: 509-515.
Cobaleda-Velásco M., Alanís-Bañuelos R. E., Almaraz-Abarca N., Rojas-López M., González-Valdez L. S., Ávila-Reyes J. A., Rodrigo S. Phenolic profiles and antioxidant properties of Physalis angulata L. as quality indicators. Journal of Pharmacy and Pharmacognosy Research, 2017, 5(2): 114-128.
Dag D., Kilercioglu M., Oztop M. Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT – Food Science and Technology, 2017, 83: 86-94 https://doi.org/10.1016/j.lwt.2017.05.007
da Silva D. F., Pio R., Soares J. D. R., Elias H. H. S., Villa F., Vilas Boas E. V. B. Light spectrum on the quality of fruits of physalis species in subtropical area. Bragantia, 2016, 75(3): 371-376 https://dx.doi.org/10.1590/1678-4499.463
de Rosso V. V., Mercadante A. Z. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 2007, 55 (13): 5062-5072 https://doi.org/10.1021/jf0705421
Dewi L., Sulchan M., Kisdjamiatun. Potency of Cape gooseberry (Physalis peruviana) juice in improving antioxidant and adiponectin level of high fat diet streptozotocin rat model. Romanian Journal of Diabetes Nutrition & Metabolic Diseases, 2018, 25 (3): 253-260 https://doi.org/10.2478/rjdnmd-2018-0029
Dkhil M., Al-Quraishy S., Diab M., Othmann M., Aref A., Moneim A. The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity. Food and Chemical Toxicology, 2014, 74: 98-106 https://doi.org/10.1016/j.fct.2014.09.013
Eken A., Ünlü-Endirlik B., Baldemir A., Ilgün S., Soykurt B., Erdem O., Akay G. Antioxidant capacity and metal content of Physalis peruviana L. fruits sold in markets. Journal of Clinical and Analytical Medicine, 2016, 7(3): 291-294 https://doi.org/10.4328/JCAM.2709
El-Beltagi H. S., Mohamed H. I., Safwat G., Gamal M., Megahed B. M. H. Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanzen, 2019, 71(2): 113-122 https://doi.org/10.1007/s10343-019-00456-8
El-Gengaihi S. E., Hassan E. E., Hamed M. A., Zahran H. G., Mohammed M. A. Chemical composition and biological evaluation of Physalis peruviana root as hepato-renal protective agent. Journal of Dietary Supplements, 2013, 10(1): 39-53 https://doi.org/10.3109/19390211.2012.760509
El Sheikha A., Piombo G., Goli T., Montet D. Main composition of physalis (Physalis pubescens L.) fruit juice from Egypt. Fruits, 2010, 65(4): 255-265. https://doi.org/10.1051/fruits/2010021
Erkaya T., Dağdemir R., Şengül M. Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream. Food Research International, 2012, 45(1): 331-335 https://doi.org/10.1016/j.foodres.2011.09.013
Ertürk O., Ҫol Ayvaz M., Can Z., Karaman Ű., Korkmaz K. Antioxidant, antimicrobial activities and phenolic and chemical contents of Physalis peruviana L. from Trabzon, Turkey. Indian Journal of Pharmaceutical Education and Research, 2017, 51(3): 213-216 https://doi.org/10.5530/ijper.51.3s.15
Esmailpoor A., Ghasemian A., Dehnavi E., Peidayesh H., Teimouri M. Physalis alkekengi hydroalcoholic extract enhances the apoptosis in mouse model of breast cancer cells. Gene Reports, 2019, 15: Article ID 100366, 5 pages https://doi.org/10.1016/j.genrep.2019.100366
Etzbach L., Pfeiffer A., Weber F., Schieber A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MS. Food Chemistry, 2018, 245: 508-517 https://doi.org/10.1016/j.foodchem.2017.10.120
Fan Y., Mao Y., Cao S., Xia G., Zhang Q., Zhang H., Qiu F., Kang N. S5, a withanolide isolated from Physalis pubescens L., induces G2/M cell cycle arrest via the EGFR/P38 pathway in human melanoma A375 cells. Molecules, 2018, 23(12): Article ID 3175, 14 pages https://doi.org/10.3390/molecules23123175
Feng S., Jiao K., Zhu Y., Wang H., Jiang M., Wang H. Molecular identification of species of Physalis (Solanaceae) using a candidate DNA barcode: the chloroplast psbA–trnH intergenic region. Genome, 2018, 61(1): 15-20 https://doi.org/10.1139/gen-2017-0115
Fukushima A., Nakamura M., Suzuki H., Yamazaki M., Knoch E., Mori T., Umemoto N., Morita M., Hirai G., Sodeoka M., Saito K. Comparative characterization of the leaf tissue of Physalis alkekengi and Physalis peruviana using RNA-seq and metabolite profiling. Frontiers in Plant Science, 2016, 7: Article ID 1883, 12 pages https://doi.org/10.3389/fpls.2016.01883
Hassan H. A., Ghareb N. E., Azhari G. F. Antioxidant activity and free radical-scavenging of cape gooseberry (Physalis peruviana L.) in hepatocellular carcinoma rats model. Hepatoma Research, 2017a, 3: 27-33 https://doi.org/10.20517/2394-5079.2016.33
Hassan H. A., Serag H. M., Qadir M. S., Ramadan M. F. Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinoma-linked apoptosis and cell cycle arrest. Biomedicine and Pharmacotherapy, 2017b, 94: 1129-1137 https://doi.org/10.1016/j.biopha.2017.08.014
Hegazy E. M., Ali A. O., El-Sayed H. S., Kassem J. M. Quality properties of husk tomato juice and its impact in stirred probiotic yogurt. Asian Food Science Journal, 2019, 7(2): 1-10 https://doi.org/10.9734/afsj/2019/v7i229962
Hemalatha R., Kumar A., Prakash O., Supriya A., Chauhan A. S., Kudachikar V. B. Development and quality evaluation of ready to serve (RTS) beverage from Cape gooseberry (Physalis peruviana L.). Beverages, 2018, 4(2): 42 https://doi.org/10.3390/beverages4020042
Hernández-Sandoval G. R., Cortés-Rodriguez M., Ciro-Velásquez H. J. Effect of storage conditions on quality of a functional powder of cape gooseberry obtained by spray drying. Revista U.D.C.A Actualidad & Divulgación Científica, 2014, 17(1): 139-149.
Hu X.-F., Zhang Q., Zhang P.-P., Sun L.-J., Liang J.-C., Morris-Natschke S. L., Chen Y., Lee K.-H. Evaluation of in vitro/in vivo anti-diabetic effects and identification of compounds from Physalis alkekengi. Fitoterapia, 2018, 127: 129-137 https://doi.org/10.1016/j.fitote.2018.02.015
Ji L., Yuan Y. L., Luo L. P, Chen Z., Ma X. Q., Ma Z. J., Cheng L. Physalins with anti-inflammatory activity are present in Physalis alkekengi var. Francheti and can function as Michael reaction acceptors. Steroids, 2012, 77(5): 441-447.
Junqueira J., Correa J., de Oliveira H., Avelar R., Pio L. Convective drying of cape gooseberry fruits: Effect of pretreatments on kinetics and quality parameters. LWT – Food Science and Technology, 2017, 82: 404-410. https://doi.org/10.1016/j.lwt.2017.04.072
Khan W., Bakht J., Shafi M. Antimicrobial potentials of different solvent extracted samples from Physalis ixocarpa. Pakistan Journal of Pharmaceutical Sciences, 2016, 29(2): 467-475.
Kindscher K., Timmermann B. N., Zhang H., Gollapudi R., Corbett S., Samadi A., Cohen M. The ethnobotany and ethnopharmacology of wild tomatillos, Physalis longifolia Nutt., and related physalis species: A review. Economic Botany, 2012, 66(3): 298-310 https://doi.org/10.1007/s12231-012-9210-7
Kupska M., Wasilewski T., Jedrkiewicz R., Gromadzka J., Namieśnik J. Determination of terpene profiles in potential superfruits. International Journal of Food Properties, 2016, 19(12): 2726-2738 https://doi.org/10.1080/10942912.2016.1144066
Kusumaningtyas R. W., Laily N., Limandha P. Potential of ciplukan (Physalis angulata L.) as source of functional ingredient. Procedia Chemistry, 2015, 14: 367-372 https://doi.org/10.1016/j.proche.2015.03.050
Li X., Zhao J., Yang M., Liu Y., Li Z., Li R., Li X., Li N., Xu Q., Khan I. A., Yang S. Physalins and withanolides from the fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino and the inhibitory activities against human tumor cells. Phytochemistry Letters, 2014, 10: 95-100 http://dx.doi.org/10.1016/j.phytol.2014.08.004
Li A. L., Chen B. J., Li G. H., Zhou M. X., Li Y. R., Ren D. M., Lou H. X., Wang X. N., Shen T. Physalis alkekengi L. var. franchetii (Mast.) Makino: an ethnomedical, phytochemical and pharmacological review. Journal of Ethnopharmacology, 2018, 210: 260-274 http://dx.doi.org/10.1016/j.jep.2017.08.022
Licodiedoff S., Koslowski L., Ribani R. Flavonol rates of gosseberry fruits (Physalis peruviana) determined by HPLC through the optimization and validation of the analytic method. International Journal of Food Science and Nutrition Engineering, 2013, 3(1): 1-6.
Lim T. K. Physalis angulate. Physalis peruviana. In: Edible Medicinal and Non-Medicinal Plants: Volume 6, Fruits. Springer Science & Business Media, Dordrecht, 2013, pp. 283-299; pp. 300-309, Print ISBN: 978-94-007-5627-4, eBook ISBN: 978-94-007-5268-1 https://doi.org/10.1007/978-94-007-5628-1
Liu X.-G., Jiang F.-Y., Gao P.-Y., Jin M., Yang D., Nian Z.-F., Zhang Z.-X. Optimization of extraction conditions for flavonoids of Physalis alkekengi var. franchetii stems by response surface methodology and inhibition of acetylcholinesterase activity. Journal of the Mexican Chemical Society, 2015, 59(1): 59-66.
Lv H., Fu C.-S., Hu H.-X., Wang X.-N., Ren D.-M., Lou H.-X., Shen T. Chemical constituents from the calyxes of Physalis alkekengi L. var. franchetii (Mast.) Makino. Biochemical Systematics and Ecology, 2018, 78: 63-65 https://doi.org/10.1016/j.bse.2018.04.003
Magaña-Lira N., Peña-Lomelí A., Urzúa-Soria F., Hernández-Antonio R. Weed control in husk tomato (Physalis ixocarpa Brot. ex Horm.). Revista Chapingo Serie Horticultura, 2019, 25(2): 129-139 http://dx.doi.org/10.5154/r.rchsh.2018.06.011
Martínez M. Revision of Physalis section Epeteiorhiza (Solanaceae). Anales del Instituto de Biología Universidad Nacional Autónoma de México, Serie Botánico, 1998, 69(2): 71-117.
Mayorga H., Duque C., Knapp H., Winterhalter P. Hydroxyester disaccharides from fruits of cape gooseberry (Physalis peruviana). Phytochemistry, 2002, 59(4): 439-445 https://doi.org/10.1016/S0031-9422(01)00467-8
Medina-Medrano J. R., Almaraz-Abarca N., González-Elizondo M. S., Uribe-Soto J. N., González-Valdez L. S., Herrera-Arrieta Y. Phenolic constituents and antioxidant properties of five wild species of Physalis (Solanaceae). Botanical studies, 2015, 56(1): article ID 24, 13 pages https://doi.org/10.1186/s40529-015-0101-y
Meira C. S., Guimarães E. T., Santos J. A. F., Moreira D. R. M., Nogueira R. C., Tomassini T. C. B., Ribeiro I. M., Souza C. V. C., Santos R. R., Soares M. B. P. In vitro and in vivo antiparasitic activity of Physalis angulata L. concentrated ethanolic extract against Trypanosoma cruzi. Phytomedicine, 2015, 22: 969-974 http://dx.doi.org/10.1016/j.phymed.2015.07.004
Men R. Z., Li N., Ding W. J., Hu Z. J., Ma Z. J., Cheng L. Unprecedent aminophysalin from Physalis angulata. Steroids, 2014, 88: 60-65 https://doi.org/10.1016/j.steroids.2014.06.016
Morales-Contreras B. E., Rosas-Flores W., Contreras-Esquivel J. C., Wicker L., Morales-Castro J. Pectin from husk tomato (Physalis ixocarpa Brot.): Rheological behavior at different extraction conditions. Carbohydrate Polymers, 2018, 179: 282-289. https://doi.org/10.1016/j.carbpol.2017.09.097
Muniz J., Kretzschmar A. A., Rufato L., Pelizza T. R., Rufato A. D. R., Macedo T. A. General aspects of physalis cultivation. Ciência Rural, 2014, 44(6): 964-970 https://dx.doi.org/10.1590/S0103-84782014005000006
Namjoyan F., Jahangiri A., Azemi M. E., Arkian E., Mousavi H. Inhibitory effects of Physalis alkekengi L., Alcea rosea L., Bunium persicum B. Fedtsch. and Marrubium vulgare L. on mushroom tyrosinase. Jundishapur Journal of Natural Pharmaceutical Products, 2015, 10(1): e23356.
Naumova N., Nechaeva T., Savenkov O., Fotev Y. Yield and fruit properties of husk tomato (Physalis phyladelphica) Cultivars grown in the open field in the south of West Siberia. Horticulturae, 2019, 5(1): article ID 19, 12 pages https://doi.org/10.3390/horticulturae5010019
Nawirska-Olszanska A., Stepien B., Biesiada A., Kolniak-Ostek J., Oziembloski M. Rheological, chemical and physical characteristics of golden berry (Physalis peruviana L.) after convective and microwave drying. Foods, 2017, 60(8): article ID 60, 11 pages https://doi.org/10.3390/foods6080060
Olivares-Tenorio M.-L., Dekker M., Verkerk R., van Boekel M. Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 2016, 57: 83-92 https://doi.org/10.1016/j.tifs.2016.09.009
Olivares-Tenorio M.-L., Dekker M., Verkerk R., van Boekel M. Evaluating the effect of storage conditions on the shelf life of cape gooseberry (Physalis peruviana L.). LWT – Food Science and Technology, 2017a, 80: 523-530 https://doi.org/10.1016/j.lwt.2017.03.027
Olivares-Tenorio M.-L., Verkerk R., van Boekel M., Dekker M. Thermal stability of phytochemicals, HNF and antioxidant activity in cape gooseberry (Physalis peruviana L.). Journal of Functional Foods, 2017b, 32: 46-57. https://doi.org/10.1016/j.jff.2017.02.021
Ordonez-Santos L., Martinez-Giron J., Arias-Jaramillo M. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in cape gooseberry juice. Food Chemistry, 2017, 233(15): 96-100 https://doi.org/10.1016/j.foodchem.2017.04.114
Panayotov N. Plovdiv – the first Bulgarian variety of physalis (Physalis peruviana L.). Agricultural Sciences, 2009, 1(1): 9-12. [in Bulgarian]
Panayotov N. Comparative evaluation by morphological behaviors and productivity on different genotype of cape gooseberry (Physalis peruviana L.). Agriculture and Food, 2016, 4: 115-121 https://www.scientific-publications.net/get/1000020/1465221093436724.pdf
Panayotov N., Pevicharova G. Investigation on the possibilities for cape gooseberry (Physalis peruviana L.) post-harvest storage. Proceedings of the First Symposium on Horticulture, 16-20 October 2002, Ohrid, Macedonia, pp. 634-637.
Panayotov N., Popova A. Investigation of the possibilities for after harvest ripening the fruits of cape gooseberry (Physalis peruviana L.) depending on the applied agrotechnology. Turkish Journal of Agricultural and Natural Sciences, 2014a, 1(s1): 1134-1140 http://dergipark.org.tr/turkjans/issue/13310/160879
Panayotov N., Popova A. Vegetative and productive behaviors of cape gooseberry (Physalis peruviana L.) grown by direct sowing outside under conditions of Bulgaria. Turkish Journal of Agricultural and Natural Sciences, 2014b, 1(s1): 1141-1146 http://dergipark.org.tr/turkjans/issue/13310/160880
Panayotov N., Popova A. Influence of the different rate of nitrogen on the possibilities for post-harvest ripening of the cape gooseberry (Physalis peruviana L.) fruits. Scientific Papers. Ser. B, Horticulture, 2015, 49: 245-250 http://horticulturejournal.usamv.ro/pdf/2015/art38.pdf
Panayotov N., Popova A. Biological characteristics and productivity of cape gooseberry (Physalis peruviana L.) plants according to different term of seedling sowing. Agro-Knowledge Journal, 2016a, 17(3): 267-277 https://doi.org/10.7251/AGREN1603267P
Panayotov N., Popova A. Investigation of the options to extend the period of market supply with fruits of cape gooseberry (Physalis peruviana L.). Acta Horticulturae et Regiotecturae, 2016b, 19(s1): 18-24 https://doi.org/10.1515/ahr-2016-0018
Panayotov N., Dimitrova M., Krasteva L., Dimova D., Svetleva D. Investigation of the efficiency and selectivity of some herbicides applied on cape gooseberry (Physalis peruviana L.). Agro-Knowledge Journal, 2012, 13(4): 547-553 https://doi.org/10.7251/AGREN1204547P
Panayotov N., Dimova D., Popova A., Ivanova V., Svetleva D. Assessment of yield and stability of two varieties of cape gooseberry (Physalis peruviana L.) depending on the nitrogen rates. Optimization of Ornamental and Garden Plant, Technologies and Environment, 2016, 7(12): 157-161 http://www.zak.lt/mokslo_darbai/2016_157_161.pdf
Petkov V. (Ed.) Contemporary Phytotherapy. Sofia, Medicina I Fizkultura. 1982, 518 pages. [in Bulgarian]
Pinto L. A., Meira C. S., Villarreal C. F., Vannier-Santos M. A., de Souza C. V. C., Ribeiro I. M., Tomassini T. C. B., Galvão-Castro B., Soares M. B. P., Grassi M. F. R. Physalin F, a seco-steroid from Physalis angulata L., has immunosuppressive activity in peripheral blood mononuclear cells from patients with HTLV1-associated myelopathy. Biomedicine & Pharmacotherapy, 2016, 79: 129-134 https://doi.org/10.1016/j.biopha.2016.01.041
Puente L., Pinto-Munoz G., Castro E., Cortes M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Research International, 2011, 44(7): 1733-1740 https://doi.org/10.1016/j.foodres.2010.09.034
Puspaningtyas A. Docking studies of Physalis peruviana ethanol extract using molegro virtual docker on insulin tyrosine kinase receptor as antidiabetic agent. International Current Pharmaceutical Journal, 2014, 3(5): 265-269 https://doi.org/10.3329/icpj.v3i5.18534
Qiu L., Zhao F., Zhi-Hu Jiang Z.-H., Chen L.-X., Zhao Q., Liu H.-X., Yao X.-S., Qiu F. Steroids and flavonoids from Physalis alkekengi var. franchetii and their inhibitory effects on nitric oxide production. Journal of Natural Products, 2008, 71(4): 642-646 https://doi.org/10.1021/np700713r
Ramadan M. F. Bioactive phytochemicals, nutritional value, and functional properties of Cape gooseberry (Physalis peruviana): An overview. Food Research International, 2011, 44(7): 1830-1836 https://doi.org/10.1016/j.foodres.2010.12.042
Ramadan M. F. Physalis peruviana pomace suppresses high-cholesterol diet-induced hypercholesterolemia in rats. Grasas y Aceites, 2012, 63(4): 411-422 https://doi.org/10.3989/gya.047412
Ramadan M. F., Mörsel J.-T. Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 2003, 51(4): 969-974 https://doi.org/10.1021/jf020778z
Ramadan M. F., Mörsel J.-T. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of the Science of Food and Agriculture, 2007, 87(3): 452-460. https://doi.org/10.1002/jsfa.2728
Ramadan M. F., Mörsel J.-T. Oil extractability from enzymatically-treated goldenberry (Physalis peruviana L.) pomace: range of operational variables. International Journal of Food Science and Technology, 2009, 44(3): 435-444 https://doi.org/10.1111/j.1365-2621.2006.01511.x
Ramadan M. F., Sitohy M., Mörsel J.-T. Solvent and enzyme-aided aqueous extraction of goldenberry (Physalis peruviana L.) pomace oil: Impact of processing on composition and quality of oil and meal. European Food Research and Technology, 2008, 226(6): 1445-1458 https://doi.org/10.1007/s00217-007-0676-y
Ramadan M., El-Ghora A., Ghanem K. Volatile compounds, antioxidants, and anticancer activities of Cape gooseberry fruits (Physalis peruviana L.): an in vitro study. Journal of the Arab Society for Medical Research, 2017, 26: 56-64 https://doi.org/10.4103/1687-4293.175556
Ramadan M. F., Hassan N. A., Elsanhoty R. M., Sitohy M. Z. Goldenberry (Physalis peruviana) juice rich in health-promoting compounds suppresses high-cholesterol diet-induced hypercholersterolemia. Journal of Food Biochemistry, 2013, 37(6): 708–722 https://doi.org/10.1111/j.1745-4514.2012.00669.x
Rengifo-Salgado E., Vargas-Arana G. Physalis angulata L. (Bolsa Mullaca): A review of its traditional uses, chemistry and pharmacology. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 2013, 12(5): 431-445.
Rivera D. E., Ocampo Y. C., Castro J. P., Barrios L., Diaz F., Franco L. A. A screening of plants used in Colombian traditional medicine revealed the anti-inflammatory potential of Physalis angulata calyces. Saudi Journal of Biological Sciences, 2018, version of record online: 31 May 2018. In press https://doi.org/10.1016/j.sjbs.2018.05.030
Rodrigues E., Rockenbach I., Cataneo C., Gonzaga L., Chaves E., Fett R. Minerals and essential fatty acids of the exotic fruit Physalis peruviana L. Ciencis Tecnologia de. Alimentos, 2009, 29(3), 642-654 http://dx.doi.org/10.1590/S0101-20612009000300029
Sang-ngern M., Youn U., Park E.-J., Kondralyuk T., Simmons C., Wall M., Ruf M., Lorch S., Leong E., Pezzuto J. Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26(12): 2755-2759 https://doi.org/10.1016/j.bmcl.2016.04.077
Sathyadevi M., Subramanian S. Extraction, isolation and characterization of bioactive flavonoids from the fruits of Physalis peruviana Linn extract. Asian Journal of Pharmaceutical and Clinical Research, 2015, 8(1): 152-157.
Shah V. V., Shah N. D., Patrekar P. V. Medicinal plants from Solanaceae family. Research Journal of Pharmacy and Technology, 2013, 6(2): 143-151.
Sharma N., Bano A., Dhaliwal H., Sharma V. Perspectives and possibilities of Indian species of genus Physalis (L.) – a comprehensive review. European Journal of Pharmaceutical and Medical Research, 2015, 2(2): 326-353.
Sharmila S., Kalaichelvi K., Rajeswari M., Anjanadevi N. Studies on the folklore medicinal uses of some indigenous plants among the tribes of Thiashola, Manjoor, Nilgiris South Division, Western Ghats. International Journal of Plant, Animal and Environmental Sciences, 2014, 4(3): 14-22.
Sharoba A. M., Ramadan M. F. Rheological behavior and physicochemical characteristics of goldenberry (Physalis peruviana) juice as affected by enzymatic treatment. Journal of Food Processing and Preservation, 2011, 35(2): 201-219 https://doi.org/10.1111/j.1745-4549.2009.00471.x
Svobodova B., Kuban V. Solanaceae: A family well-known and still surprising. In: Phytochemicals in Vegetables: A Valuable Source of Bioactive Compounds (Petropoulos S. A., Ferreira I. C. F. R., Barros L. Eds.). Bentham Science Publishers, 2018, pp. 296-372. Print ISBN: 978-1-68108-740-5, eISBN: 978-1-68108-739-9 https://doi.org/10.2174/97816810873991180101
Shu Z., Xing N., Wang Q., Li X., Xu B., Li Z., Kuang H. Antibacterial and anti-inflammatory activities of Physalis . alkekengi var. franchetii and its main constituents. Evidence-Based Complementary and Alternative Medicine, 2016: Article ID 4359394, 10 pages. http://dx.doi.org/10.1155/2016/4359394
Tong H., Liang Z., Wang G. Structural characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Physalis alkekengi L. Carbohydrate Polymers, 2008, 71(2): 316-323 https://doi.org/10.1016/j.carbpol.2007.06.001
Tuan Anh H. L., Thao D. T., Dung D. T., Kiem P. V., Quang T. H., Hai Yen P. T., Tuan D. T., Cuong P. V., Viet Cuong L. C., Hung T. M. Phytochemical constituents and cytotoxic activity of Physalis angulata L. growing in Vietnam. Phytochemistry Letters, 2018, 27: 193-196 https://doi.org/10.1016/j.phytol.2018.07.029
US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Legacy release, 2018. http://www.ars.usda.gov/nutrientdata
Vega-Galvez A., Lopez J., Torres-Ossandon M., Galotto M., Puente-Diaz L., Quispe-Fuentes I., Scala K. High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of cape gooseberry pulp (Physalis peruviana L.). LWT – Food Science and Technology, 2014, 58: 519-526 http://dx.doi.org/10.1016/j.lwt.2014.04.010
Wang J. J., Yu Y., Zhang B. Q., Du Y. H., MacArthur R. L., Dong P., Su R. J., Feng X. Q. Opposite effects of two-derived antioxidants from Physalis pubescens L. on hepatocellular carcinoma cell line Malhavu. Current Pharmaceutical Biotechnology, 2016, 17: 1117-1125 https://doi.org/10.2174/1389201017666160901101431
Wen X., Erşan S., Li M., Wang K., Steingass C. B., Schweiggert R. M., Ni Y., Carle R. Physicochemical characteristics and phytochemical profiles of yellow and red physalis (Physalis alkekengi L. and P. pubescens L.) fruits cultivated in China. Food Research International, 2019, 120: 389-398 https://doi.org/10.1016/j.foodres.2019.03.002
Wen X., Hempel J., Schweiggert R. M., Ni Y., Carle R. Carotenoids and carotenoid esters of red and yellow physalis (Physalis alkekengi L. and P. pubescens L.) fruits and calyces. Journal of Agricultural and Food Chemistry, 2017, 65 (30): 6140-6151 https://doi.org/10.1021/acs.jafc.7b02514
Xia G. Y., Yao T., Zhang B. Y., Li Y., Kang N., Cao S. J., Ding L. Q., Chen L. X., Qiu F. Withapubesides A-D: natural inducible nitric oxide synthase (iNOS) inhibitors from Physalis pubescens. Organic & Biomolecular Chemistry, 2017a, 15(47): 10016-10023. https://doi.org/10.1039/c7ob02551c
Xia G., Huang Y., Xia M., Wang L., Kang N., Ding L., Chen L., Qiu F. A new eremophilane glycoside from the fruits of Physalis pubescens and its cytotoxic activity. Natural Product Research, 2017b, 31(23): 2737-2744 https://doi.org/10.1080/14786419.2017.1294176
Xu Y.M., Wijeratne E. M. K., Brooks A. D., Tewary P., Xuan L. J., Wang W. Q., Sayers T. J., Gunatilaka A. A. L. Cytotoxic and other withanolides from aeroponically grown Physalis philadelphica. Phytochemistry, 2018, 152: 174-181 https://doi.org/10.1016/j.phytochem.2018.04.018
Yang Y. K., Xie S. D., Xu W. X., Nian Y., Liu X. L., Peng X. R., Ding Z. T., Qiu M. H. Six new physalins from Physalis alkekengi var. franchetii and their cytotoxicity and antibacterial activity. Fitoterapia, 2016, 112: 144-152 https://doi.org/10.1016/j.fitote.2016.05.010
Yıldız G, İzli N., Ünal H., Uylaşer V. Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). Journal of Food Science and Technology, 2015, 52(4): 2320-2327 https://doi.org/10.1007/s13197-014-1280-3
Zamora-Tavares P., Vargas-Ponce O., Sánchez-Martínez J., Cabrera-Toledo D. Diversity and genetic structure of the husk tomato (Physalis philadelphica Lam.) in Western Mexico. Genetic Resources and Crop Evolution, 2015, 62(1): 141-153 https://doi.org/10.1007/s10722-014-0163-9
Zhang W.-N., Tong W.-Y. Chemical constituents and biological activities of plants from the genus Physalis. Chemistry and Biodiversity, 2016, 13(1): 48-65. https://doi.org/10.1002/cbdv.201400435
Zhang C. R., Khan W., Bakht J., Nair M. G. New antiinflammatory sucrose esters in the natural sticky coating of tomatillo (Physalis philadelphica), an important culinary fruit. Food Chemistry, 2016, 196: 726-732 https://doi.org/10.1016/j.foodchem.2015.10.007
Zhang Q., Hu X.-F., Xin M.-M., Liu H.-B., Sun L.-J., Morris-Natschke S. L., Chen Y., Lee K.-H. Antidiabetic potential of the ethyl acetate extract of Physalis alkekengi and chemical constituents identified by HPLC-ESI-QTOF-MS. Journal of Ethnopharmacology, 2018, 225: 202-210 https://doi.org/10.1016/j.jep.2018.07.007
Zhang Y.-J., Deng G.-F., Xu X.-R., Wu S., Li S., Li H.-B. Chemical components and bioactivities of cape gooseberry (Physalis peruviana). International Journal of Food Nutrition and Safety, 2013, 3(1): 15-24.
Zhang Z.-Y., Lu A., D’Arcy W. G. Solanaceae. Physalis. Flora of China, 1994, 17: 311-312.
Zhao X., Chen Z., Yin Y., Li X. Effects of polysaccharide from Physalis alkekengi var. francheti on liver injury and intestinal microflora in type-2 diabetic mice. Pharmaceutical Biology, 2017, 55(1): 2020-2025 https://doi.org/10.1080/13880209.2017.1345953
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Open access articles are distributed under the terms and conditions of the Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0) license:
https://creativecommons.org/licenses/by-sa/4.0
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102