Main Article Content

Nadezhda Mazova Venelina Popova Albena Stoyanova

Abstract

The main objective of this mini-review was to synthesize recent data about the phytochemical composition, the nutritional properties, and the biological and pharmacological activities of a now cosmopolitan genus, Physalis (Solanaceae), being in the focus of intensive research over the last two decades. Six Physalis species with nutritional and pharmacological promise are considered in particular – P. peruviana L., P. philadelphica Lam., P. ixocarpa Brot. ex Horm., P. angulata L., P. pubescens L., and P. alkekengi L. Summarized contemporary data on the metabolite profile and the biological activities of Physalis species support their century-long use in traditional medicine and human nutrition. The fruit represent a rich source of minerals, vitamins, fibers, carotenoids, proteins, fructose, sucrose esters, pectins, flavonoids, polyphenols, polyunsaturated fatty acids, phytosterols and many other beneficial nutrients. Individual phytochemicals and complex fractions isolated from Physalis plants demonstrate various biological and pharmacological activities, the most promising of which include antimicrobial, antioxidant, anti-diabetic, hepato-renoprotective, anti-cancer, anti-inflammatory, immunomodulatory and others. Most of these activities are associated with the presence of flavonoids, phenylpropanoids, alkaloids, physalins, withanolides, and other bioactive compounds. The accumulated data disclose the potential of Physalis spp. as highly functional foods, as profitable crops for many regions over the world, and as sources of valuable secondary metabolites for phytopharmacy, novel medicine and cosmetics. Information provided by this review is also important for a more intensive promotion of Physalis species in Bulgaria and for future studies on their composition and benefits.

Article Details

References

Anjalam A., Kalpana S., Vijai D., Premalatha S. Documentation of medicinal plants used by malayali tribes in Kolli Hills. International Journal of Advanced Research in Biological Sciences, 2016, 3(3): 101-107.

Bahmani M., Rafieian-Kopaei M., Naghdi N., Nejad A. S. M., Afsordeh O. Physalis alkekengi: A review of its therapeutic effects. Journal of Chemical and Pharmaceutical Sciences, 2016, 9(3): 1472-1475.

Bazalar Pereda M.S., Nazareno M.A., Viturro C.I. Nutritional and antioxidant properties of Physalis peruviana L. fruits from the Argentinean Northern Andean region. Plant Foods for Human Nutrition, 2019, 74(1): 68-75 https://doi.org/10.1007/s11130-018-0702-1

Chang S. K., Alasalvar C., Shahidi F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects – A comprehensive review. Critical Reviews in Food Science and Nutrition, 2019, 59(10): 1580-1604 https://doi.org/10.1080/10408398.2017.1422111

Chen L.-X., Xia G.-Y., Liu Q.-Y., Xie Y.-Y., Qiu F. Chemical constituents from the calyces of Physalis alkekengi var. franchetii. Biochemical Systematics and Ecology, 2014, 54: 31-35 https://doi.org/10.1016/j.bse.2013.12.030

Chen L. X., Xia G. Y., He H., Huang J., Qiu F., Zi X. L. New withanolides with TRAIL-sensitizing effect from Physalis pubescens L. RSC Advances, 2016, 6(58): 52925-52936 https://doi.org/10.1039/C6RA07031K

Choi J. K., Murillo G., Su B. N., Pezzuto J. M., Kinghorn A. D., Mehta R. G. Ixocarpalactone A isolated from the Mexican tomatillo shows potent antiproliferative and apoptotic activity in colon cancer cells. The FEBS Journal, 2006, 273: 5714-5723 https://doi.org/10.1111/j.1742-4658.2006.05560.x

Cirigliano A., Colamarino I., Mareggiani G., Bado S. Biological effects of Physalis peruviana L. (Solanaceae) crude extracts and its major withanolides on Ceratitis capitata Wiedemann (Diptera: Tephritidae), Boletín de Sanidad Vegetal Plagas, 2008, 34: 509-515.

Cobaleda-Velásco M., Alanís-Bañuelos R. E., Almaraz-Abarca N., Rojas-López M., González-Valdez L. S., Ávila-Reyes J. A., Rodrigo S. Phenolic profiles and antioxidant properties of Physalis angulata L. as quality indicators. Journal of Pharmacy and Pharmacognosy Research, 2017, 5(2): 114-128.

Dag D., Kilercioglu M., Oztop M. Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT – Food Science and Technology, 2017, 83: 86-94 https://doi.org/10.1016/j.lwt.2017.05.007

da Silva D. F., Pio R., Soares J. D. R., Elias H. H. S., Villa F., Vilas Boas E. V. B. Light spectrum on the quality of fruits of physalis species in subtropical area. Bragantia, 2016, 75(3): 371-376 https://dx.doi.org/10.1590/1678-4499.463

de Rosso V. V., Mercadante A. Z. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 2007, 55 (13): 5062-5072 https://doi.org/10.1021/jf0705421

Dewi L., Sulchan M., Kisdjamiatun. Potency of Cape gooseberry (Physalis peruviana) juice in improving antioxidant and adiponectin level of high fat diet streptozotocin rat model. Romanian Journal of Diabetes Nutrition & Metabolic Diseases, 2018, 25 (3): 253-260 https://doi.org/10.2478/rjdnmd-2018-0029

Dkhil M., Al-Quraishy S., Diab M., Othmann M., Aref A., Moneim A. The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity. Food and Chemical Toxicology, 2014, 74: 98-106 https://doi.org/10.1016/j.fct.2014.09.013

Eken A., Ünlü-Endirlik B., Baldemir A., Ilgün S., Soykurt B., Erdem O., Akay G. Antioxidant capacity and metal content of Physalis peruviana L. fruits sold in markets. Journal of Clinical and Analytical Medicine, 2016, 7(3): 291-294 https://doi.org/10.4328/JCAM.2709

El-Beltagi H. S., Mohamed H. I., Safwat G., Gamal M., Megahed B. M. H. Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanzen, 2019, 71(2): 113-122 https://doi.org/10.1007/s10343-019-00456-8

El-Gengaihi S. E., Hassan E. E., Hamed M. A., Zahran H. G., Mohammed M. A. Chemical composition and biological evaluation of Physalis peruviana root as hepato-renal protective agent. Journal of Dietary Supplements, 2013, 10(1): 39-53 https://doi.org/10.3109/19390211.2012.760509

El Sheikha A., Piombo G., Goli T., Montet D. Main composition of physalis (Physalis pubescens L.) fruit juice from Egypt. Fruits, 2010, 65(4): 255-265. https://doi.org/10.1051/fruits/2010021

Erkaya T., Dağdemir R., Şengül M. Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream. Food Research International, 2012, 45(1): 331-335 https://doi.org/10.1016/j.foodres.2011.09.013

Ertürk O., Ҫol Ayvaz M., Can Z., Karaman Ű., Korkmaz K. Antioxidant, antimicrobial activities and phenolic and chemical contents of Physalis peruviana L. from Trabzon, Turkey. Indian Journal of Pharmaceutical Education and Research, 2017, 51(3): 213-216 https://doi.org/10.5530/ijper.51.3s.15

Esmailpoor A., Ghasemian A., Dehnavi E., Peidayesh H., Teimouri M. Physalis alkekengi hydroalcoholic extract enhances the apoptosis in mouse model of breast cancer cells. Gene Reports, 2019, 15: Article ID 100366, 5 pages https://doi.org/10.1016/j.genrep.2019.100366

Etzbach L., Pfeiffer A., Weber F., Schieber A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MS. Food Chemistry, 2018, 245: 508-517 https://doi.org/10.1016/j.foodchem.2017.10.120

Fan Y., Mao Y., Cao S., Xia G., Zhang Q., Zhang H., Qiu F., Kang N. S5, a withanolide isolated from Physalis pubescens L., induces G2/M cell cycle arrest via the EGFR/P38 pathway in human melanoma A375 cells. Molecules, 2018, 23(12): Article ID 3175, 14 pages https://doi.org/10.3390/molecules23123175

Feng S., Jiao K., Zhu Y., Wang H., Jiang M., Wang H. Molecular identification of species of Physalis (Solanaceae) using a candidate DNA barcode: the chloroplast psbA–trnH intergenic region. Genome, 2018, 61(1): 15-20 https://doi.org/10.1139/gen-2017-0115

Fukushima A., Nakamura M., Suzuki H., Yamazaki M., Knoch E., Mori T., Umemoto N., Morita M., Hirai G., Sodeoka M., Saito K. Comparative characterization of the leaf tissue of Physalis alkekengi and Physalis peruviana using RNA-seq and metabolite profiling. Frontiers in Plant Science, 2016, 7: Article ID 1883, 12 pages https://doi.org/10.3389/fpls.2016.01883

Hassan H. A., Ghareb N. E., Azhari G. F. Antioxidant activity and free radical-scavenging of cape gooseberry (Physalis peruviana L.) in hepatocellular carcinoma rats model. Hepatoma Research, 2017a, 3: 27-33 https://doi.org/10.20517/2394-5079.2016.33

Hassan H. A., Serag H. M., Qadir M. S., Ramadan M. F. Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinoma-linked apoptosis and cell cycle arrest. Biomedicine and Pharmacotherapy, 2017b, 94: 1129-1137 https://doi.org/10.1016/j.biopha.2017.08.014

Hegazy E. M., Ali A. O., El-Sayed H. S., Kassem J. M. Quality properties of husk tomato juice and its impact in stirred probiotic yogurt. Asian Food Science Journal, 2019, 7(2): 1-10 https://doi.org/10.9734/afsj/2019/v7i229962

Hemalatha R., Kumar A., Prakash O., Supriya A., Chauhan A. S., Kudachikar V. B. Development and quality evaluation of ready to serve (RTS) beverage from Cape gooseberry (Physalis peruviana L.). Beverages, 2018, 4(2): 42 https://doi.org/10.3390/beverages4020042

Hernández-Sandoval G. R., Cortés-Rodriguez M., Ciro-Velásquez H. J. Effect of storage conditions on quality of a functional powder of cape gooseberry obtained by spray drying. Revista U.D.C.A Actualidad & Divulgación Científica, 2014, 17(1): 139-149.

Hu X.-F., Zhang Q., Zhang P.-P., Sun L.-J., Liang J.-C., Morris-Natschke S. L., Chen Y., Lee K.-H. Evaluation of in vitro/in vivo anti-diabetic effects and identification of compounds from Physalis alkekengi. Fitoterapia, 2018, 127: 129-137 https://doi.org/10.1016/j.fitote.2018.02.015

Ji L., Yuan Y. L., Luo L. P, Chen Z., Ma X. Q., Ma Z. J., Cheng L. Physalins with anti-inflammatory activity are present in Physalis alkekengi var. Francheti and can function as Michael reaction acceptors. Steroids, 2012, 77(5): 441-447.

Junqueira J., Correa J., de Oliveira H., Avelar R., Pio L. Convective drying of cape gooseberry fruits: Effect of pretreatments on kinetics and quality parameters. LWT – Food Science and Technology, 2017, 82: 404-410. https://doi.org/10.1016/j.lwt.2017.04.072

Khan W., Bakht J., Shafi M. Antimicrobial potentials of different solvent extracted samples from Physalis ixocarpa. Pakistan Journal of Pharmaceutical Sciences, 2016, 29(2): 467-475.

Kindscher K., Timmermann B. N., Zhang H., Gollapudi R., Corbett S., Samadi A., Cohen M. The ethnobotany and ethnopharmacology of wild tomatillos, Physalis longifolia Nutt., and related physalis species: A review. Economic Botany, 2012, 66(3): 298-310 https://doi.org/10.1007/s12231-012-9210-7

Kupska M., Wasilewski T., Jedrkiewicz R., Gromadzka J., Namieśnik J. Determination of terpene profiles in potential superfruits. International Journal of Food Properties, 2016, 19(12): 2726-2738 https://doi.org/10.1080/10942912.2016.1144066

Kusumaningtyas R. W., Laily N., Limandha P. Potential of ciplukan (Physalis angulata L.) as source of functional ingredient. Procedia Chemistry, 2015, 14: 367-372 https://doi.org/10.1016/j.proche.2015.03.050

Li X., Zhao J., Yang M., Liu Y., Li Z., Li R., Li X., Li N., Xu Q., Khan I. A., Yang S. Physalins and withanolides from the fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino and the inhibitory activities against human tumor cells. Phytochemistry Letters, 2014, 10: 95-100 http://dx.doi.org/10.1016/j.phytol.2014.08.004

Li A. L., Chen B. J., Li G. H., Zhou M. X., Li Y. R., Ren D. M., Lou H. X., Wang X. N., Shen T. Physalis alkekengi L. var. franchetii (Mast.) Makino: an ethnomedical, phytochemical and pharmacological review. Journal of Ethnopharmacology, 2018, 210: 260-274 http://dx.doi.org/10.1016/j.jep.2017.08.022

Licodiedoff S., Koslowski L., Ribani R. Flavonol rates of gosseberry fruits (Physalis peruviana) determined by HPLC through the optimization and validation of the analytic method. International Journal of Food Science and Nutrition Engineering, 2013, 3(1): 1-6.

Lim T. K. Physalis angulate. Physalis peruviana. In: Edible Medicinal and Non-Medicinal Plants: Volume 6, Fruits. Springer Science & Business Media, Dordrecht, 2013, pp. 283-299; pp. 300-309, Print ISBN: 978-94-007-5627-4, eBook ISBN: 978-94-007-5268-1 https://doi.org/10.1007/978-94-007-5628-1

Liu X.-G., Jiang F.-Y., Gao P.-Y., Jin M., Yang D., Nian Z.-F., Zhang Z.-X. Optimization of extraction conditions for flavonoids of Physalis alkekengi var. franchetii stems by response surface methodology and inhibition of acetylcholinesterase activity. Journal of the Mexican Chemical Society, 2015, 59(1): 59-66.

Lv H., Fu C.-S., Hu H.-X., Wang X.-N., Ren D.-M., Lou H.-X., Shen T. Chemical constituents from the calyxes of Physalis alkekengi L. var. franchetii (Mast.) Makino. Biochemical Systematics and Ecology, 2018, 78: 63-65 https://doi.org/10.1016/j.bse.2018.04.003

Magaña-Lira N., Peña-Lomelí A., Urzúa-Soria F., Hernández-Antonio R. Weed control in husk tomato (Physalis ixocarpa Brot. ex Horm.). Revista Chapingo Serie Horticultura, 2019, 25(2): 129-139 http://dx.doi.org/10.5154/r.rchsh.2018.06.011

Martínez M. Revision of Physalis section Epeteiorhiza (Solanaceae). Anales del Instituto de Biología Universidad Nacional Autónoma de México, Serie Botánico, 1998, 69(2): 71-117.

Mayorga H., Duque C., Knapp H., Winterhalter P. Hydroxyester disaccharides from fruits of cape gooseberry (Physalis peruviana). Phytochemistry, 2002, 59(4): 439-445 https://doi.org/10.1016/S0031-9422(01)00467-8

Medina-Medrano J. R., Almaraz-Abarca N., González-Elizondo M. S., Uribe-Soto J. N., González-Valdez L. S., Herrera-Arrieta Y. Phenolic constituents and antioxidant properties of five wild species of Physalis (Solanaceae). Botanical studies, 2015, 56(1): article ID 24, 13 pages https://doi.org/10.1186/s40529-015-0101-y

Meira C. S., Guimarães E. T., Santos J. A. F., Moreira D. R. M., Nogueira R. C., Tomassini T. C. B., Ribeiro I. M., Souza C. V. C., Santos R. R., Soares M. B. P. In vitro and in vivo antiparasitic activity of Physalis angulata L. concentrated ethanolic extract against Trypanosoma cruzi. Phytomedicine, 2015, 22: 969-974 http://dx.doi.org/10.1016/j.phymed.2015.07.004

Men R. Z., Li N., Ding W. J., Hu Z. J., Ma Z. J., Cheng L. Unprecedent aminophysalin from Physalis angulata. Steroids, 2014, 88: 60-65 https://doi.org/10.1016/j.steroids.2014.06.016

Morales-Contreras B. E., Rosas-Flores W., Contreras-Esquivel J. C., Wicker L., Morales-Castro J. Pectin from husk tomato (Physalis ixocarpa Brot.): Rheological behavior at different extraction conditions. Carbohydrate Polymers, 2018, 179: 282-289. https://doi.org/10.1016/j.carbpol.2017.09.097

Muniz J., Kretzschmar A. A., Rufato L., Pelizza T. R., Rufato A. D. R., Macedo T. A. General aspects of physalis cultivation. Ciência Rural, 2014, 44(6): 964-970 https://dx.doi.org/10.1590/S0103-84782014005000006

Namjoyan F., Jahangiri A., Azemi M. E., Arkian E., Mousavi H. Inhibitory effects of Physalis alkekengi L., Alcea rosea L., Bunium persicum B. Fedtsch. and Marrubium vulgare L. on mushroom tyrosinase. Jundishapur Journal of Natural Pharmaceutical Products, 2015, 10(1): e23356.

Naumova N., Nechaeva T., Savenkov O., Fotev Y. Yield and fruit properties of husk tomato (Physalis phyladelphica) Cultivars grown in the open field in the south of West Siberia. Horticulturae, 2019, 5(1): article ID 19, 12 pages https://doi.org/10.3390/horticulturae5010019

Nawirska-Olszanska A., Stepien B., Biesiada A., Kolniak-Ostek J., Oziembloski M. Rheological, chemical and physical characteristics of golden berry (Physalis peruviana L.) after convective and microwave drying. Foods, 2017, 60(8): article ID 60, 11 pages https://doi.org/10.3390/foods6080060

Olivares-Tenorio M.-L., Dekker M., Verkerk R., van Boekel M. Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 2016, 57: 83-92 https://doi.org/10.1016/j.tifs.2016.09.009

Olivares-Tenorio M.-L., Dekker M., Verkerk R., van Boekel M. Evaluating the effect of storage conditions on the shelf life of cape gooseberry (Physalis peruviana L.). LWT – Food Science and Technology, 2017a, 80: 523-530 https://doi.org/10.1016/j.lwt.2017.03.027

Olivares-Tenorio M.-L., Verkerk R., van Boekel M., Dekker M. Thermal stability of phytochemicals, HNF and antioxidant activity in cape gooseberry (Physalis peruviana L.). Journal of Functional Foods, 2017b, 32: 46-57. https://doi.org/10.1016/j.jff.2017.02.021

Ordonez-Santos L., Martinez-Giron J., Arias-Jaramillo M. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in cape gooseberry juice. Food Chemistry, 2017, 233(15): 96-100 https://doi.org/10.1016/j.foodchem.2017.04.114

Panayotov N. Plovdiv – the first Bulgarian variety of physalis (Physalis peruviana L.). Agricultural Sciences, 2009, 1(1): 9-12. [in Bulgarian]

Panayotov N. Comparative evaluation by morphological behaviors and productivity on different genotype of cape gooseberry (Physalis peruviana L.). Agriculture and Food, 2016, 4: 115-121 https://www.scientific-publications.net/get/1000020/1465221093436724.pdf

Panayotov N., Pevicharova G. Investigation on the possibilities for cape gooseberry (Physalis peruviana L.) post-harvest storage. Proceedings of the First Symposium on Horticulture, 16-20 October 2002, Ohrid, Macedonia, pp. 634-637.

Panayotov N., Popova A. Investigation of the possibilities for after harvest ripening the fruits of cape gooseberry (Physalis peruviana L.) depending on the applied agrotechnology. Turkish Journal of Agricultural and Natural Sciences, 2014a, 1(s1): 1134-1140 http://dergipark.org.tr/turkjans/issue/13310/160879

Panayotov N., Popova A. Vegetative and productive behaviors of cape gooseberry (Physalis peruviana L.) grown by direct sowing outside under conditions of Bulgaria. Turkish Journal of Agricultural and Natural Sciences, 2014b, 1(s1): 1141-1146 http://dergipark.org.tr/turkjans/issue/13310/160880

Panayotov N., Popova A. Influence of the different rate of nitrogen on the possibilities for post-harvest ripening of the cape gooseberry (Physalis peruviana L.) fruits. Scientific Papers. Ser. B, Horticulture, 2015, 49: 245-250 http://horticulturejournal.usamv.ro/pdf/2015/art38.pdf

Panayotov N., Popova A. Biological characteristics and productivity of cape gooseberry (Physalis peruviana L.) plants according to different term of seedling sowing. Agro-Knowledge Journal, 2016a, 17(3): 267-277 https://doi.org/10.7251/AGREN1603267P

Panayotov N., Popova A. Investigation of the options to extend the period of market supply with fruits of cape gooseberry (Physalis peruviana L.). Acta Horticulturae et Regiotecturae, 2016b, 19(s1): 18-24 https://doi.org/10.1515/ahr-2016-0018

Panayotov N., Dimitrova M., Krasteva L., Dimova D., Svetleva D. Investigation of the efficiency and selectivity of some herbicides applied on cape gooseberry (Physalis peruviana L.). Agro-Knowledge Journal, 2012, 13(4): 547-553 https://doi.org/10.7251/AGREN1204547P

Panayotov N., Dimova D., Popova A., Ivanova V., Svetleva D. Assessment of yield and stability of two varieties of cape gooseberry (Physalis peruviana L.) depending on the nitrogen rates. Optimization of Ornamental and Garden Plant, Technologies and Environment, 2016, 7(12): 157-161 http://www.zak.lt/mokslo_darbai/2016_157_161.pdf

Petkov V. (Ed.) Contemporary Phytotherapy. Sofia, Medicina I Fizkultura. 1982, 518 pages. [in Bulgarian]

Pinto L. A., Meira C. S., Villarreal C. F., Vannier-Santos M. A., de Souza C. V. C., Ribeiro I. M., Tomassini T. C. B., Galvão-Castro B., Soares M. B. P., Grassi M. F. R. Physalin F, a seco-steroid from Physalis angulata L., has immunosuppressive activity in peripheral blood mononuclear cells from patients with HTLV1-associated myelopathy. Biomedicine & Pharmacotherapy, 2016, 79: 129-134 https://doi.org/10.1016/j.biopha.2016.01.041

Puente L., Pinto-Munoz G., Castro E., Cortes M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Research International, 2011, 44(7): 1733-1740 https://doi.org/10.1016/j.foodres.2010.09.034

Puspaningtyas A. Docking studies of Physalis peruviana ethanol extract using molegro virtual docker on insulin tyrosine kinase receptor as antidiabetic agent. International Current Pharmaceutical Journal, 2014, 3(5): 265-269 https://doi.org/10.3329/icpj.v3i5.18534

Qiu L., Zhao F., Zhi-Hu Jiang Z.-H., Chen L.-X., Zhao Q., Liu H.-X., Yao X.-S., Qiu F. Steroids and flavonoids from Physalis alkekengi var. franchetii and their inhibitory effects on nitric oxide production. Journal of Natural Products, 2008, 71(4): 642-646 https://doi.org/10.1021/np700713r

Ramadan M. F. Bioactive phytochemicals, nutritional value, and functional properties of Cape gooseberry (Physalis peruviana): An overview. Food Research International, 2011, 44(7): 1830-1836 https://doi.org/10.1016/j.foodres.2010.12.042

Ramadan M. F. Physalis peruviana pomace suppresses high-cholesterol diet-induced hypercholesterolemia in rats. Grasas y Aceites, 2012, 63(4): 411-422 https://doi.org/10.3989/gya.047412

Ramadan M. F., Mörsel J.-T. Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 2003, 51(4): 969-974 https://doi.org/10.1021/jf020778z

Ramadan M. F., Mörsel J.-T. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of the Science of Food and Agriculture, 2007, 87(3): 452-460. https://doi.org/10.1002/jsfa.2728

Ramadan M. F., Mörsel J.-T. Oil extractability from enzymatically-treated goldenberry (Physalis peruviana L.) pomace: range of operational variables. International Journal of Food Science and Technology, 2009, 44(3): 435-444 https://doi.org/10.1111/j.1365-2621.2006.01511.x

Ramadan M. F., Sitohy M., Mörsel J.-T. Solvent and enzyme-aided aqueous extraction of goldenberry (Physalis peruviana L.) pomace oil: Impact of processing on composition and quality of oil and meal. European Food Research and Technology, 2008, 226(6): 1445-1458 https://doi.org/10.1007/s00217-007-0676-y

Ramadan M., El-Ghora A., Ghanem K. Volatile compounds, antioxidants, and anticancer activities of Cape gooseberry fruits (Physalis peruviana L.): an in vitro study. Journal of the Arab Society for Medical Research, 2017, 26: 56-64 https://doi.org/10.4103/1687-4293.175556

Ramadan M. F., Hassan N. A., Elsanhoty R. M., Sitohy M. Z. Goldenberry (Physalis peruviana) juice rich in health-promoting compounds suppresses high-cholesterol diet-induced hypercholersterolemia. Journal of Food Biochemistry, 2013, 37(6): 708–722 https://doi.org/10.1111/j.1745-4514.2012.00669.x

Rengifo-Salgado E., Vargas-Arana G. Physalis angulata L. (Bolsa Mullaca): A review of its traditional uses, chemistry and pharmacology. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 2013, 12(5): 431-445.

Rivera D. E., Ocampo Y. C., Castro J. P., Barrios L., Diaz F., Franco L. A. A screening of plants used in Colombian traditional medicine revealed the anti-inflammatory potential of Physalis angulata calyces. Saudi Journal of Biological Sciences, 2018, version of record online: 31 May 2018. In press https://doi.org/10.1016/j.sjbs.2018.05.030

Rodrigues E., Rockenbach I., Cataneo C., Gonzaga L., Chaves E., Fett R. Minerals and essential fatty acids of the exotic fruit Physalis peruviana L. Ciencis Tecnologia de. Alimentos, 2009, 29(3), 642-654 http://dx.doi.org/10.1590/S0101-20612009000300029

Sang-ngern M., Youn U., Park E.-J., Kondralyuk T., Simmons C., Wall M., Ruf M., Lorch S., Leong E., Pezzuto J. Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26(12): 2755-2759 https://doi.org/10.1016/j.bmcl.2016.04.077

Sathyadevi M., Subramanian S. Extraction, isolation and characterization of bioactive flavonoids from the fruits of Physalis peruviana Linn extract. Asian Journal of Pharmaceutical and Clinical Research, 2015, 8(1): 152-157.

Shah V. V., Shah N. D., Patrekar P. V. Medicinal plants from Solanaceae family. Research Journal of Pharmacy and Technology, 2013, 6(2): 143-151.

Sharma N., Bano A., Dhaliwal H., Sharma V. Perspectives and possibilities of Indian species of genus Physalis (L.) – a comprehensive review. European Journal of Pharmaceutical and Medical Research, 2015, 2(2): 326-353.

Sharmila S., Kalaichelvi K., Rajeswari M., Anjanadevi N. Studies on the folklore medicinal uses of some indigenous plants among the tribes of Thiashola, Manjoor, Nilgiris South Division, Western Ghats. International Journal of Plant, Animal and Environmental Sciences, 2014, 4(3): 14-22.

Sharoba A. M., Ramadan M. F. Rheological behavior and physicochemical characteristics of goldenberry (Physalis peruviana) juice as affected by enzymatic treatment. Journal of Food Processing and Preservation, 2011, 35(2): 201-219 https://doi.org/10.1111/j.1745-4549.2009.00471.x

Svobodova B., Kuban V. Solanaceae: A family well-known and still surprising. In: Phytochemicals in Vegetables: A Valuable Source of Bioactive Compounds (Petropoulos S. A., Ferreira I. C. F. R., Barros L. Eds.). Bentham Science Publishers, 2018, pp. 296-372. Print ISBN: 978-1-68108-740-5, eISBN: 978-1-68108-739-9 https://doi.org/10.2174/97816810873991180101

Shu Z., Xing N., Wang Q., Li X., Xu B., Li Z., Kuang H. Antibacterial and anti-inflammatory activities of Physalis . alkekengi var. franchetii and its main constituents. Evidence-Based Complementary and Alternative Medicine, 2016: Article ID 4359394, 10 pages. http://dx.doi.org/10.1155/2016/4359394

Tong H., Liang Z., Wang G. Structural characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Physalis alkekengi L. Carbohydrate Polymers, 2008, 71(2): 316-323 https://doi.org/10.1016/j.carbpol.2007.06.001

Tuan Anh H. L., Thao D. T., Dung D. T., Kiem P. V., Quang T. H., Hai Yen P. T., Tuan D. T., Cuong P. V., Viet Cuong L. C., Hung T. M. Phytochemical constituents and cytotoxic activity of Physalis angulata L. growing in Vietnam. Phytochemistry Letters, 2018, 27: 193-196 https://doi.org/10.1016/j.phytol.2018.07.029

US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Legacy release, 2018. http://www.ars.usda.gov/nutrientdata

Vega-Galvez A., Lopez J., Torres-Ossandon M., Galotto M., Puente-Diaz L., Quispe-Fuentes I., Scala K. High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of cape gooseberry pulp (Physalis peruviana L.). LWT – Food Science and Technology, 2014, 58: 519-526 http://dx.doi.org/10.1016/j.lwt.2014.04.010

Wang J. J., Yu Y., Zhang B. Q., Du Y. H., MacArthur R. L., Dong P., Su R. J., Feng X. Q. Opposite effects of two-derived antioxidants from Physalis pubescens L. on hepatocellular carcinoma cell line Malhavu. Current Pharmaceutical Biotechnology, 2016, 17: 1117-1125 https://doi.org/10.2174/1389201017666160901101431

Wen X., Erşan S., Li M., Wang K., Steingass C. B., Schweiggert R. M., Ni Y., Carle R. Physicochemical characteristics and phytochemical profiles of yellow and red physalis (Physalis alkekengi L. and P. pubescens L.) fruits cultivated in China. Food Research International, 2019, 120: 389-398 https://doi.org/10.1016/j.foodres.2019.03.002

Wen X., Hempel J., Schweiggert R. M., Ni Y., Carle R. Carotenoids and carotenoid esters of red and yellow physalis (Physalis alkekengi L. and P. pubescens L.) fruits and calyces. Journal of Agricultural and Food Chemistry, 2017, 65 (30): 6140-6151 https://doi.org/10.1021/acs.jafc.7b02514

Xia G. Y., Yao T., Zhang B. Y., Li Y., Kang N., Cao S. J., Ding L. Q., Chen L. X., Qiu F. Withapubesides A-D: natural inducible nitric oxide synthase (iNOS) inhibitors from Physalis pubescens. Organic & Biomolecular Chemistry, 2017a, 15(47): 10016-10023. https://doi.org/10.1039/c7ob02551c

Xia G., Huang Y., Xia M., Wang L., Kang N., Ding L., Chen L., Qiu F. A new eremophilane glycoside from the fruits of Physalis pubescens and its cytotoxic activity. Natural Product Research, 2017b, 31(23): 2737-2744 https://doi.org/10.1080/14786419.2017.1294176

Xu Y.M., Wijeratne E. M. K., Brooks A. D., Tewary P., Xuan L. J., Wang W. Q., Sayers T. J., Gunatilaka A. A. L. Cytotoxic and other withanolides from aeroponically grown Physalis philadelphica. Phytochemistry, 2018, 152: 174-181 https://doi.org/10.1016/j.phytochem.2018.04.018

Yang Y. K., Xie S. D., Xu W. X., Nian Y., Liu X. L., Peng X. R., Ding Z. T., Qiu M. H. Six new physalins from Physalis alkekengi var. franchetii and their cytotoxicity and antibacterial activity. Fitoterapia, 2016, 112: 144-152 https://doi.org/10.1016/j.fitote.2016.05.010

Yıldız G, İzli N., Ünal H., Uylaşer V. Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). Journal of Food Science and Technology, 2015, 52(4): 2320-2327 https://doi.org/10.1007/s13197-014-1280-3

Zamora-Tavares P., Vargas-Ponce O., Sánchez-Martínez J., Cabrera-Toledo D. Diversity and genetic structure of the husk tomato (Physalis philadelphica Lam.) in Western Mexico. Genetic Resources and Crop Evolution, 2015, 62(1): 141-153 https://doi.org/10.1007/s10722-014-0163-9

Zhang W.-N., Tong W.-Y. Chemical constituents and biological activities of plants from the genus Physalis. Chemistry and Biodiversity, 2016, 13(1): 48-65. https://doi.org/10.1002/cbdv.201400435

Zhang C. R., Khan W., Bakht J., Nair M. G. New antiinflammatory sucrose esters in the natural sticky coating of tomatillo (Physalis philadelphica), an important culinary fruit. Food Chemistry, 2016, 196: 726-732 https://doi.org/10.1016/j.foodchem.2015.10.007

Zhang Q., Hu X.-F., Xin M.-M., Liu H.-B., Sun L.-J., Morris-Natschke S. L., Chen Y., Lee K.-H. Antidiabetic potential of the ethyl acetate extract of Physalis alkekengi and chemical constituents identified by HPLC-ESI-QTOF-MS. Journal of Ethnopharmacology, 2018, 225: 202-210 https://doi.org/10.1016/j.jep.2018.07.007

Zhang Y.-J., Deng G.-F., Xu X.-R., Wu S., Li S., Li H.-B. Chemical components and bioactivities of cape gooseberry (Physalis peruviana). International Journal of Food Nutrition and Safety, 2013, 3(1): 15-24.

Zhang Z.-Y., Lu A., D’Arcy W. G. Solanaceae. Physalis. Flora of China, 1994, 17: 311-312.

Zhao X., Chen Z., Yin Y., Li X. Effects of polysaccharide from Physalis alkekengi var. francheti on liver injury and intestinal microflora in type-2 diabetic mice. Pharmaceutical Biology, 2017, 55(1): 2020-2025 https://doi.org/10.1080/13880209.2017.1345953

How to Cite
MAZOVA, Nadezhda; POPOVA, Venelina; STOYANOVA, Albena. Phytochemical composition and biological activity of Physalis spp.: A mini-review. Food Science and Applied Biotechnology, [S.l.], v. 3, n. 1, p. 56-70, mar. 2020. ISSN 2603-3380. Available at: <https://www.ijfsab.com/index.php/fsab/article/view/80>. Date accessed: 18 sep. 2020. doi: https://doi.org/10.30721/fsab2020.v3.i1.80.