Optimization of technological parameters for osmotic dehydration of black chokeberry Optimization of osmotic dehydration of black chokeberry
Main Article Content
Abstract
Many plant extracts selected for their high in vitro antibacterial activity in microbiological media have a far lower in situ antibacterial activity in foods. This is likely due to interactions of plant antimicrobial molecules with food components such as proteins or dispersed fat at the expense of their interaction with target unwanted bacteria. Gaillac red wine powder and Cinnamon cassia essential oil were selected for their in vitro antibacterial activity against Staphylococcus aureus CNRZ3 and Listeria innocua LRGIA 01, respectively. In order to assess their potential application to the preservation of raw meat or dairy products, respectively, their antibacterial activity was tested in Mueller Hinton broth (MHB) supplemented with up to 20% beef meat proteins to mimick raw beef meat protein content and in TSB, skimmed, semi-skimmed and whole milk, respectively. Supplementation of MHB with beef extract proteins annihilated the antibacterial activity of Gaillac red wine powder as well as of resveratrol, a stilbene polyphenol present in red wine. The comparison of the anti-Listeria innocua activity of C. cassia essential oil in TSB 1% (w/w), skimmed, semi-skimmed and whole milk led to the conclusion that its antibacterial activity was significantly reduced in the presence of milk fat globules but not significantly by milk proteins. Complexified microbiological media or liquid foods such as sterilized milk with various milk fat contents might thus be valuable tools for the rapid screening of antibacterial plant extracts of interest for perishable foods preservation.
Article Details
References
Ara V. Schwarzfruchtige Aronia: Gesund - und bald in aller Munde?. Flüssiges Obst, 2002, 69: 653-658 [in German] https://www.tib.eu/de/suchen/id/BLSE%3ARN120979530/Schwarzfruchtige-Aronia-Gesund-und-bald-in-aller/
BDS EN 12143:2000 Fruit and vegetable juices - Estimation of soluble solids content - Refractometric method. Sofia, Bulgaria: The Bulgarian Institute of Standardization, 2009 [in Bulgarian].
BDS EN 12145:2000 Fruit and vegetable juices - Determination of total dry matter - Gravimetric method with loss of mass on drying Sofia, Bulgaria: The Bulgarian Institute of Standardization, 2009 [in Bulgarian].
Benvenuti S., Pellati F., Melegari M., Bertelli D. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes and Aronia. Journal of Food Science, 2004, 69(3): 164-169. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2621.2004.tb13352.x
Biglari F., Alkarkhi A., Easa A. Antioxidant activity and phenolic content of various date palm (Phoenix dactelifera) fruits from Iran. Food Chemistry, 2008, 107(4): 1636-1641. https://www.sciencedirect.com/science/article/pii/S0308814607010552
Brand-Williams W., Cuvelier M., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 1995, 28(1): 25-30. https://www.sciencedirect.com/science/article/pii/S0023643895800085
Conway J., Castaigne F., Picard G., Vovan, X. Mass transfer considerations in the osmotic dehydration of apples. Canadian Institute of Food Science Technology Journal, 1983, 16(1): 25-29. https://www.sciencedirect.com/science/article/pii/S0315546383720146
Dinkova R., Shikov V., Mihalev K., Velchev Z., Dinkov H., Mollov P. Changes in the total anthocyanins and polyphenols during processing of wild berries into freshly pressed juices. Journal of EcoAgri Tourism, 2012, 1: 254-259. http://www.rosita.ro/jeat/archive/1_2012.pdf
Jeppsson N., Johansson R. Changes in fruit quality in black chokeberry (Aronia melanocarpa) during maturation. The Journal of Horticultural Science and Biotechnology, 2000, 75(3): 340-345. https://www.tandfonline.com/doi/abs/10.1080/14620316.2000.11511247
Ferradji A., Chaouche F., Belhachat D., Malek A. Optimization of osmotic dehydration of tomatoes slices in salt and sucrose solutions using response surface methodology. Revue des Energies Renouvelables, 2015, 18(4): 539-549. https://www.cder.dz/spip.php?article2602
Khan M. Osmotic dehydration technique for fruits preservation - A review. Pakistan Journal of Food Sciences, 2012, 22(2): 71-85. http://www.psfst.com/__jpd_fstr/0473981cd08716b49b5dd8ef2e0c575a.pdf
Khatir A., Acheheb H., Malek A., Ferradji A. Optimization of osmotic dehydration of orange pieces (valencia late) in sugar solution using response surface methodology. Revue des Energies Renouvelables, 2013, 16(2): 247-256. https://www.cder.dz/vlib/revue/pdf/v016_n2_texte_5.pdf
Koponen J., Happonen A., Mattila P., Torronen A. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. Journal Agricultural and Food Chemistry, 2007, 55(4): 1612-1619. https://www.ncbi.nlm.nih.gov/pubmed/17261015
Kucner A., Klewicki R., Sójka M. The influence of selected osmotic dehydration and pretreatment parameters on dry matter and polyphenol content in highbush blueberry (Vaccinium corymbosumL.) fruits. Food and Bioprocess Technology, 2013, 6(8): 2031-2047. https://link.springer.com/article/10.1007/s11947-012-0997-0.
Kulling S.E., Rawel H.M. Chokeberry (Aronia melanocarpa) – A review on the characteristic components and potential health effects. Planta Medica, 2008, 74(13): 1625-1634. https://www.ncbi.nlm.nih.gov/pubmed/18937167
Lehmann H. Die Aroniabeere und ihre Verarbeitung. Flüssiges Obst, 1990, 57: 746-752.
Marcotte M., Toupin C., Le Maguer M. Mass transfer in cellular tissues. Part I: The mathematical model. Journal of Food Engeneering, 1991, 13(3): 199-220. https://www.sciencedirect.com/science/article/pii/026087749190027P
Mizrahi S., Eichler S., Ramon O. Osmotic dehydration phenomena in gel systems. Journal of Food Engineering, 2001, 49(2-3): 87-96. https://www.sciencedirect.com/science/article/pii/S0260877400002089
Panagiotou N.M., Karathanos V.T., Maroulis Z.B. Effect of osmotic agent on osmotic dehydration of fruits. Drying Technology, 1999, 17(1-2): 175-189. https://www.tandfonline.com/doi/abs/10.1080/07373939908917524
Phisut N. Factors affecting mass transfer during osmotic dehydration of fruits. International Food Research Journal, 2012, 19(1): 7-18. http://www.ifrj.upm.edu.my/19%20(01)%202011/(2)IFRJ-2011-168%20Phisut.pdf
Raoult-Wack A. Recent advances in the osmotic dehydration of foods. Trends in Food Science & Technology, 1994, 5(8): 255-260. https://www.sciencedirect.com/science/article/abs/pii/0924224494900183
Saxena A., Maity T., Raju P., Bawa A. Degradation kinetics of colour and total carotenoids in jackfruit (Artocarpus heterophyllus) bulb slices during hot air drying. Food and Bioprocess Technology, 2012, 5(2): 672-679. https://link.springer.com/article/10.1007/s11947-010-0409-2
Seidemann J. Chokeberries a fruit little-known till now. Deutsch Lebensmitt Rundsch, 1993, 89: 149-151. https://www.scopus.com/record/display.uri?eid=2-s2.0-21144462036&origin=inward
Sereno A., Moreira R., Martinez E. Mass transfer coefficients during osmotic dehydration of apple in single and combined aqueous solutions of sugar and salt. Journal of Food Engineering, 2001, 47: 43-49. https://web.fe.up.pt/~sereno/publ/2001/01JFE_MassTransfCoeff.pdf
Shi J., Xue S. Application and development of osmotic dehydration technology in food processing. In: Advances in Food Dehydration (C. Ratti Ed.), CRC Press, Taylor & Francis Group. 2008, pp 187-205, Print ISBN: 13:987-1-4200-5252-7, eBook ISBN: 10-1-4200-5252-7. https://www.taylorfrancis.com/books/e/9781420052534
Spiazzi E., Mascheroni R. Mass transfer model for osmotic dehydration of fruits and vegetables - I. Development of the simulation model. Journal of Food Engineering, 1997, 34(4): 387-410. https://www.sciencedirect.com/science/article/pii/S0260877497001027
Tanaka T., Tanaka A. Chemical components and characteristics of black chokeberry. Japanese Society of Food Science and Technology, 2001, 48: 606-610. https://www.tib.eu/de/suchen/id/BLSE%3ARN102473358/Chemical-Components-and-Characteristics-of-Black/
Telis V., Murari R., Yamashita F. Diffusion coefficients during osmotic dehydration of tomatoes in ternary solutions. Journal of Food Engineering, 2004, 61(2): 253-259. https://www.sciencedirect.com/science/article/pii/S0260877403000979
Tiwari R., Jalali S. Studies on osmotic dehydration of different varieties of mango. In proceeding of First Indian Horticulture Congress-2004, New Delhi, India.
Tortoe Ch. A review of osmodehydration for food industry. African Journal of Food Science, 2010, 4(6): 303-324. http://www.academicjournals.org/journal/AJFS/article-full-text-pdf/76B260924389
Walther E., Schnell S. Black chokeberry (Aronia melanocarpa) - a special crop fruit. Zeitschrift für Arznei und Gewurzpflanzen, 2009, 14(4): 179-182. https://www.cabdirect.org/cabdirect/abstract/20103010268
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Open access articles are distributed under the terms and conditions of the Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0) license:
https://creativecommons.org/licenses/by-sa/4.0
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102