Main Article Content

Adelina Bogoeva Albena Durakova Velichka Yanakieva Bozhidar Bozadzhiev

Abstract

The current scientific research is focused on the sorption isotherms, monolayer moisture content and storage study of full-fatted grape seeds flakes (FGSF) of different grape variety locally grow in Bulgaria (Mavrud, Cabernet Sauvignon, Syrah, Merlot, Dimyat and Sauvignon Blanc).


To determine the sorption characteristics of FGSF, we are used a static gravimetric method of saturated salt solution and relative humidity from 0.11 to 0.90 at three different temperatures – 10, 25 and 40°C. In the condition of constant water activity and increasing temperatures, the sorption capacity of the product decrease.


We are recommend the modified Henderson model for description of sorption isotherms of FGSF. The monolayer moisture content values are obtained by linearization of Braunauer-Emmett-Teller (BET), in the range of Mmads = 2.32 ÷ 3.41, Mmdes = 2.59 ÷ 3.68.


The three months storage study of samples was monitored at moisture value reduced to a value corresponded to the calculated monolayer moisture content. FGSF was packed in a co-extruded barrier film with copolymer covering for heat sealing, in the conditions for storage - temperature 18 ÷ 25°C and relative humidity 75 ÷ 85%.


No living cells of pathogenic organisms (Escherichia coli, Staphylococcus aureus and Salmonella spp.) or apparent molding were detected. The flour particle size has not changed either.

Article Details

References

Al-Muhtaseb, A.,McMinn, W., Magee, T. Moisture sorption isotherm characteristics of food products: a review. Food and bioproducts processing, 2002, 80(2), 118-128. https://doi.org/10.1205/09603080252938753

AOAC. Official Methods of Analysis 960.39, 15 th ed. Association of Official Analytical, 1990, Washington , DC.

Bell, L., Labuza, T. Determination of moisture sorption isotherms. Moisture Sorption: Practical Aspects of Isotherm Measurement and Use. The American Association of Cereal Chemists, Inc., St. Paul, MN, USA, 2000, 33-56.

Brunauer, S., Emmett, P. H., & Teller, E. Adsorption of gases in multimolecular layers. Journal of the American chemical society, 1938, 60(2), 309-319. https://doi.org/10.1021/ja01269a023

Cádiz-Gurrea, M. D. L. L., Borrás-Linares, I., Lozano-Sánchez, J., Joven, J., Fernández-Arroyo, S., Segura-Carretero, A. Cocoa and grape seed byproducts as a source of antioxidant and anti-inflammatory proanthocyanidins. International journal of molecular sciences, 2017, 18(2), 376. https://doi.org/10.3390/ijms18020376

Chen, C.-C., Morey, R. V. Comparison of four EMC/ERH equations. Transactions of the ASAE, 1989, 32(3), 983-0990. https://doi.org/10.13031/2013.31103

Decagon, A. L. Fundamentals of Moisture Sorption Isotherms. Application note. Decagon Devices, Pullman, 2011, WA Google Scholar.

Durakova, A. G., Menkov, N. D. Moisture sorption characteristics of chickpea flour. Journal of food engineering, 2005, 68(4), 535-539. https://doi.org/10.1016/j.jfoodeng.2004.06.019

Fast, R. B. Manufacturing technology of ready-to-eat cereals. Breakfast cereals and how they are made, 1990, 15-42. https://doi.org/10.1094/1891127152.002

Labuza, T. P. Oxidative changes in foods at low and intermediate moisture levels. Paper presented at the Water Relations of Foods: Proceedings of an International Symposium held in Glasgow, September 1974, 2012.

Ricci, A., Parpinello, G. P., Palma, A. S., Teslić, N., Brilli, C., Pizzi, A., Versari, A. Analytical profiling of food-grade extracts from grape (Vitis vinifera sp.) seeds and skins, green tea (Camellia sinensis) leaves and Limousin oak (Quercus robur) heartwood using MALDI-TOF-MS, ICP-MS and spectrophotometric methods. Journal of Food Composition and Analysis, 2017, 59, 95-104. https://doi.org/10.1016/j.jfca.2017.01.014

Sharma, N., Goyal, S., Alam, T., Fatma, S., Niranjan, K. Effect of Germination on the Functional and Moisture Sorption Properties of High–Pressure-Processed Foxtail Millet Grain Flour. Food and Bioprocess Technology, 2018, 11(1), 209-222.

Silva, E. K., de Barros Fernandes, R. V., Borges, S. V., Botrel, D. A., Queiroz, F. Water adsorption in rosemary essential oil microparticles: Kinetics, thermodynamics and storage conditions. Journal of food engineering, 2014, 140, 39-45. https://doi.org/10.1016/j.jfoodeng.2014.05.003

Song, Y., Zheng, L., Zhang, X. Kinetics model for supercritical fluid extraction with variable mass transport. International Journal of Heat and Mass Transfer, 2017, 112, 876-881. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.002

Rodrigues, S. P. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Science and Technology (Campinas), 2014, 34(1), 135-142. http://dx.doi.org/10.1590/S0101-20612014000100020

Standard, B. S. Coagulase-positive staphylococci (BSS) EN ISO 6888-1:2005, Coagulase-positive staphylococci, 2005.

Standard, B. S. Escherichia coli (BSS) EN ISO 16649-2:2014, Escherichia coli, 2014.

Standard, B. S. Mesophilic aerobic and facultative anaerobic bacteria (BSS) EN ISO 4833-1:2013, Mesophilic aerobic and facultative anaerobic bacteria, 2013.

Standard, B. S. Salmonella spp. (BSS) EN ISO 6579-1:2017, Salmonella spp., 2017.

Standard, B. S. Yeasts and fungi (BSS) EN ISO 21527-2:2011, Yeasts and fungi, 2011.

Teixeira, A., Baenas, N., Dominguez-Perles, R., Barros, A., Rosa, E., Moreno, D. A., Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: a review. International journal of molecular sciences, 2014, 15(9), 15638-15678. https://doi.org/10.3390/ijms150915638

Tournour, H. H., Segundo, M. A., Magalhães, L. M., Barreiros, L., Queiroz, J., Cunha, L. M. Valorization of grape pomace: Extraction of bioactive phenolics with antioxidant properties. Industrial Crops and Products, 2015, 74, 397-406. https://doi.org/10.1016/j.indcrop.2015.05.055

Wang, S., Amigo-Benavent, M., Mateos, R., Bravo, L., & Sarriá, B. Effects of in vitro digestion and storage on the phenolic content and antioxidant capacity of a red grape pomace. International journal of food sciences and nutrition, 2017, 68(2), 188-200. https://doi.org/10.1080/09637486.2016.1228099

Wolf, W., Spiess, W. E. L. and Jung, G. Standar-dization of isotherm measurements (COST-Project 90 and 90 bis). In: Stimatos, D. and Multon, J. L. (Eds.) Properties of Water in Foods in Relation to Quality and Stability. Martinus Nijhoff, Dordrech, 1985, 661-679.

Zhu, F., Du, B., Zheng, L., Li, J. Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food chemistry, 2015, 186, 207-212. https://doi.org/10.1016/j.foodchem.2014.07.057

How to Cite
BOGOEVA, Adelina et al. Moisture Sorption Characteristics and Storage Study of Grape Seeds Flakes. Food Science and Applied Biotechnology, [S.l.], v. 2, n. 2, p. 91-98, oct. 2019. ISSN 2603-3380. Available at: <https://www.ijfsab.com/index.php/fsab/article/view/63>. Date accessed: 12 nov. 2019. doi: https://doi.org/10.30721/fsab2019.v2.i2.63.