Main Article Content

Le Van Kien Dang Thao Yen Linh Vu Van Hanh Pham Thi Thu Hoai Nguyen Thi Mai Huong Ho Tuan Anh

Abstract

The selection of B. subtilis strains was carried out with 15 strains from the collections of the Vietnam National University of Agriculture and the University of Economic and Technical Industries, Hanoi, Vietnam. To investigate the specific ability of β-glucanase in supporting the hydrolysis of beer yeast cells, CMC substrates in enzyme-activated test media of traditional methods was replaced by yeast cell walls in this study. The B. subtilis strains were activated on Nutrient Broth culture and then transplanted into MT3 culture for producing β-glucanase. Optical density (OD600nm) measurement was used to estimate the bacterial density. The β-glucanase activity formed by bacteria cells free supernatant was quantified by agar diffusion method on the enzyme-activated test media MT4. Two B. Subtilis strains , BG21 and BG15, were selected based on their largest clear-zones on agar plates. By modifying the values of the affecting factors and keeping the remaining influencing factors unchanged, it was determined that the B. subtilis BG21 and BG15 strains produced the highest biomass at the conditions of the culture time of 24 and 28  h, at pH 7.0, and at 37oC, respectively; furthermore, the highest activity of β-glucanase of the two strains BG21 and BG15 was exhibited at the culture time of 52 and 56 h, at pH 7.0, and at 37oC, respectively.
Practical applications
Bacillus subtilis strains with the highest β-glucanase producing ability will be used for the production of biological products containing B. subtilis and β-glucanase which supports the hydrolysis of the beer yeast cells in the production of pig feed.

Article Details

References

Dewi R., Mubarik N., Suhartono M. Medium optimization of β-glucanase production by Bacillus subtilis SAHA 32.6 used as biological control of oil palm pathogen. Emirates Journal of Food and Agriculture, 2016, 28(2): 116-125 http://www.doi.org/10.9755/ejfa.2015-05-195

Do T. H., (2004). Nghiên cứu xạ khuẩn sinh chất kháng sinh chống nấm phân lập từ đất Quảng Nam - Đà Nẵng, Luận án tiến sĩ sinh học, Hà Nội http://www.vaas.org.vn/so-7-2017-a17505.html

ICFOOD, (2014). Men vi sinh hoạt tính cho công nghiệp chăn nuôi, (truy cập ngày 8/8/2015) https://icfood.vn/home/2014/11/20/men-vi-sinh-hoat-tinh-cho-cong-nghiep-chan-nuoi/

Lisdiyanti P., Suyanto E., Gusmawati N. and Rahayu W. Isolation and characterization of cellulase produced by cellulolytic bacteria from peat soil of Ogan Komering Ilir, South Sumatera, International Journal of Environment and Bioenergy, 2012, 3(3): 145-153.

Ly K. H., (2005). Khảo sát đặc điểm của vi khuẩn Bacillus subtilis và tìm hiểu điều kiện nuôi cấy thích hợp sản xuất thử nghiệm chế phấm Probiotic. Khoa Chăn nuôi thú y, Trường Đại học Nông Lâm TP. HCM.

Nguyen T. T. T., Ho, T. A., (2017). Tối ưu hóa điều kiện tự phân tế bào nấm men bia thải, Tạp chí Khoa học công nghệ Nông nghiệp Việt Nam, Viện Khoa học Nông nghiệp Việt Nam, số 7 (80):73-79.

Nguyen T. T. T., Nguyen H. A., Nguyen V. H., (2016). Screening and characterization of β-glucanase produced by Bacillus spp. Isolated from Muong Khuong chili sauce, International conference on agriculture development in the context of international integration: opportunities and challenges, Hanoi, Vietnam, 228 – 235 https://orbi.uliege.be/bitstream/2268/205123/2/ICOAD2016_Proceedings.pdf

Popova J., (1992). Microbiology of beer and non-alcoholic beverages, Higher Institute of Food and Flavour Industries - Plovdiv.

Quyen D. T., Do T. T., (2014). Enzyme bổ sung thức ăn chăn nuôi tự nhiên và tái tổ hợp, NXB Khoa học tự nhiên và công nghệ https://xemtailieu.com/tai-lieu/enzyme-bo-sung-thuc-an-chan-nuoi-tu-nhien-va-tai-to-hop-quyen-dinh-thi-do-thi-tuyen-968980.html

Trinh V. H., (2010), Nghiên cứu sử dụng bột protein nấm men sản xuất từ phụ phẩm men bia làm thức ăn cho lợn nuôi thương phẩm, Viện Chăn nuôi.

How to Cite
KIEN, Le Van et al. Selection of Bacillus subtilis strains capable of producing β-glucanase supporting the hydrolysis of yeast cell walls. Food Science and Applied Biotechnology, [S.l.], v. 3, n. 1, p. 103-110, mar. 2020. ISSN 2603-3380. Available at: <https://www.ijfsab.com/index.php/fsab/article/view/62>. Date accessed: 26 may 2020. doi: https://doi.org/10.30721/fsab2020.v3.i1.62.