A dual choline/phosphocholine colorimetric method for measuring the relative strength of inhibitors of choline kinases of Gram-positive pathogens Measuring choline kinase inhibitor strength using a colorimetric method
Main Article Content
Abstract
Using chemical and artificial preservation methods to keep food safe is becoming an issue with consumers. Therefore, it is important to discover antimicrobials from natural sources for use in food safety applications. The objective of the present study was to establish screening system for natural inhibitors of choline kinase (ChoK), a known antimicrobial target. A previously developed dual choline/phosphocholine colorimetric method was used to determine the relative strength of 3 choline kinase inhibitors: Hemocholinium-3, RSM-928A, and MN58 . Whole cell extracts containing the choline kinase of Streptococcus pneumoniae (sChoK) was used as a model. The measured IC50 values of these drugs were >2700 µM, 0.54 µM, and 170-225 µM, respectively. Importantly, not every step of the colorimetric method could be used in the case of every inhibitor, since each had its own particular reactive profile with the colorimetric dyes, which could have lead to confounded measurements. However, in every case, the system was flexible enough to measure choline or phosphocholine, if not both metabolites. We establish here that this dual choline/phosphocholine system is flexible enough to measure the IC50 any possible inhibitor. This colorimetric method is an ideal benchtop method for screening for natural inhibitors of bacterial ChoKs.
Article Details
References
Estevez-Braun, A., Ravelo, A. G., Perez-Sacau, E., & Lacal, J. C. A new family of choline kinase inhibitors with antiproliferative and antitumor activity derived from natural products. Clin Transl Oncol, 2015, 17(1), 74-84. https://doi.org/10.1007/s12094-014-1260-0
Grundling, A., & Schneewind, O. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(20), 8478-8483. https://doi.org/10.1073/pnas.0701821104
Gyawali, R., & Ibrahim, S. A. Impact of plant derivatives on the growth of foodborne pathogens and the functionality of probiotics. Applied Microbiology and Biotechnology, 2012, 95(1), 29-45. https://doi.org/10.1007/s00253-012-4117-x
Gyawali, R., & Ibrahim, S. A. Natural products as antimicrobial agents. Food Control, 2014, 46, 412-429. https://doi.org/10.1016/j.foodcont.2014.05.047
Hernandez-Alcoceba, R., Saniger, L., Campos, J., Nunez, M. C., Khaless, F., Gallo, M. A., Lacal, J. C. Choline kinase inhibitors as a novel approach for antiproliferative drug design. Oncogene, 1997, 15(19), 2289-2301. https://doi.org/10.1038/sj.onc.1201414
Lacal, J. C. Choline kinase: a novel target for antitumor drugs. IDrugs : the investigational drugs journal, 2001, 4(4), 419-426. http://europepmc.org/abstract/med/16015482
Lacal Sanjuan, J. C. Choline kinase as a precision medicine target for therapy in cancer, autoimmune diseases and malaria Precision Medicine, 2015, 2(e980). https://doi.org/10.14800/pm.980
Lacal, J. C., & Campos, J. M. Preclinical Characterization of RSM-932A, a Novel Anticancer Drug Targeting the Human Choline Kinase Alpha, an Enzyme Involved in Increased Lipid Metabolism of Cancer Cells. Molecular Cancer Therapeutics, 2015, 14(1), 31-39. https://doi.org/10.1158/1535-7163.MCT-14-0531
Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. Antimicrobial herb and spice compounds in food. Food Control, 2010, 21(9), 1199-1218. https://doi.org/10.1016/j.foodcont.2010.02.003
Wang, L., Jiang, Y. L., Zhang, J. R., Zhou, C. Z., & Chen, Y. X. Structural and Enzymatic Characterization of the Choline Kinase LicA from Streptococcus pneumoniae. Plos One, 2015, 10(3). https://doi.org/10.1371/journal.pone.0120467
Whiting, G. C., & Gillespie, S. H. Incorporation of choline into Streptococcus pneumoniae cell wall antigens: Evidence for choline kinase activity. Fems Microbiology Letters, 1996, 138(2-3), 141-145. https://doi.org/10.1111/j.1574-6968.1996.tb08147.x
Wittenberg, J., & Kornberg, A. Choline phosphokinase. J Biol Chem, 1953, 202(1), 431-444. http://www.jbc.org/content/202/1/431.citation
Zimmerman, T., Moneriz, C., Diez, A., Bautista, J. M., Gomez Del Pulgar, T., Cebrian, A., & Lacal, J. C. Antiplasmodial activity and mechanism of action of RSM-932A, a promising synergistic inhibitor of Plasmodium falciparum choline kinase. Antimicrob Agents Chemother, 2013, 57(12), 5878-5888. https://doi.org/10.1128/AAC.00920-13
Zimmerman, T., & Ibrahim, S. Choline Kinase, A Novel Drug Target for the Inhibition of Streptococcus pneumoniae. Antibiotics (Basel), 2017, 6(4). https://doi.org/10.3390/antibiotics6040020
Zimmerman, T., & Ibrahim, S. A. Parallel Colorimetric Quantification of Choline and Phosphocholine as a Method for Studying Choline Kinase Activity in Complex Mixtures. Antibiotics (Basel, Switzerland), 2018, 7(1). https://doi.org/10.3390/antibiotics7010024
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright Licensing Agency
Institutions based in the EU with a valid photocopying and/or digital license with the Copyright Licensing Agency may copy excerpts from books and journals published by the Academic Publishing House of the UFT Plovdiv under the terms of their license.
Copyright Clearance Center
Institutions based in the US with a valid photocopying and/or digital license with the Copyright Clearance Center may copy excerpts from books and journals published by the Academic Publishing House of the UFT Plovdiv under the terms of their license.
Other Territories: Please contact your local reproduction rights organization.
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102