Bread designed for impaired glucose metabolism, recipe composition and protein enrichers for it Bread designed for impaired glucose metabolism...
Main Article Content
Abstract
Glucose metabolism is a significant factor in the health of the human organism. It’s influenced by an individual genetic characteristics and lifestyle. When disturbances are created, conditions arise such as: impaired fasting glycaemia, impaired glucose tolerance, insulin resistance, metabolic syndrome, non-insuline-dependent diabetes mellitus, which can lead to other diseases progressing. In support of medical therapy for prevention and control, low-calorie dietary patterns are recommended to maintain the body’s energy balance through increased protein content, dietary fiber, rich mineral composition, unsaturated fats, antioxidants and vitamins. To making diet-compatible bread, raw materials should not have a negative impact on the sick organism, taking into account their nutritional profile and possible allergens. The addition of proteins to bread, through protein concentrates with indicators of a beneficial impact on the expressed problem, such as: whey protein, brown rice protein, protein powder from edible insects, implies giving this value to the product as well. As basic and supplementary raw materials suitable according to the findings are: whole rye flour, whole wheat flour, carob flour and Himalayan salt. Bread with such recipe composition would have a low glycaemic index and useful biochemical profile, but appropriate studies are needed to prove the claim.
Article Details
References
Astamirova H., Akhmanov M. Diabetic's Desk Book (5th Updated Edition). Dilog, Nike-NT-89, Sofia, 2016, pp. 407. ISBN: 978-954-2902-39-3 [in Bulgarian].
Basharat Z., Afzaal M., Saeed F., Islam F., Hussain M., Ikram A., Pervaiz M.U, Awuchi C.G. Nutritional and functional profile of carob bean (Ceratonia siliqua): A comprehensive review. International Journal of Food Properties, 2023, 26(1): 389-413. https://doi.org/10.1080/10942912.2022.2164590
Bates S.H., Jones R.B., Bailey C.J. Insulin‐like effect of pinitol. British Journal of Pharmacology, 2000, 130(8): 1944-1948. https://doi.org/10.1038/sj.bjp.0703523
Bodhini D., Morton R. W., Santhakumar V., Nakabuye M., Pomares-Millan H., Clemmensen C., Fitzpatrick S. L., Gausch-Ferre M., Pankow J. S., Ried-Larsen M., Franks P. W., ADA/EASD PMDI, Tobias D. K. Merino J., Mohan V., Loos R. J. Impact of individual and environmental factors on dietary or lifestyle interventions to prevent type 2 diabetes development: a systematic review. Communications Medicine, 2023, 3(1): 133. https://doi.org/10.1038/s43856-023-00363-0
Brotman Y., Llorente‐Wiegand C., Oyong G., Badoni S., Misra G., Anacleto R., Parween S., Pasion E., Tiozon R., Anonuevo J.J., deGuzman M.K., Alseekh S., Mbanjo E.G.N., Boyd L.A., Fernie A.R., Sreenivasulu N. The genetics underlying metabolic signatures in a brown rice diversity panel and their vital role in human nutrition. The Plant Journal, 2021, 106(2): 507-525. https://doi.org/10.1111/tpj.15182
Claessence M., Calame W., Siemensma A.D., van Baak M.A., Saris W.H. The effect of different protein hydrolysate/carbohydrate mixtures on postprandial glucagon and insulin responses in healthy subjects. European Journal of Clinical Nutrition, 2009, 63(1): 48-56. https://doi.org/10.1038/sj.ejcn.1602896
Comerford K.B., Pasin G. Emerging evidence for the importance of dietary protein source on glucoregulatory markers and type 2 diabetes: different effects of dairy, meat, fish, egg, and plant protein foods. Nutrients, 2016, 8(8): 446. https://doi.org/10.3390/nu8080446
Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 establishing the Union list of novel foods in accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods (Text with EEA relevance.) Available at: http://data.europa.eu/eli/reg_impl/2017/2470/oj
Commission Implementing Regulation (EU) 2023/5 of 3 January 2023 authorising the placing on the market of Acheta domesticus (house cricket) partially defatted powder as a novel food and amending Implementing Regulation (EU) 2017/2470 (Text with EEA relevance). Available at: http://data.europa.eu/eli/reg_impl/2023/5/oj
Cosentino F., Grant P.J., Aboyans V., Bailey C.J., Ceriello A., Delgado V., ... & Wheeler D.C. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). European Heart Journal, 2020, 41(2): 255-323. https://doi.org/10.1093/eurheartj/ehz486
Cunha N., Andrade V., Ruivo P. et Pinto P. Effects of Insect Consumption on Human Health: A Systematic Review of Human Studies. Nutrients, 2023, 8,15(14): 3076. https://doi.org/10.3390/nu15143076
DECODE Study Group. Age-and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts. Diabetes care, 2003, 26(1): 61-69. https://doi.org/10.2337/diacare.26.1.61
Davies M.J, Aroda V.R, Collins B.S., Gabbay R.A., Gree J., Maruthur N.M., Rosas S.E., Del Prato S., Mathieu C., Mingrone G., Rossing P., Tankova Ts., Tsapas A., Buse J.B. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 2022, 65(12): 1925-1966. https://doi.org/10.1007/s00125-022-05787-2
De Wit J.N. Nutritional and functional characteristics of whey proteins in food products. Journal of Dairy Science, 1998, 8(3): 597-608. https://doi.org/10.3168/jds.S0022-0302(98)75613-9
Dimova R., Chakarova N., Del Prato S., Tankova T. The relationship between dietary patterns and glycemic variability in people with impaired glucose tolerance. The Journal of Nutrition, 2023, 153(5): 1427-1438. https://doi.org/10.1016/j.tjnut.2023.03.007
Emery P. W. Basic metabolism: protein. Surgery (Oxford), 2015, 33(4): 143-147. https://doi.org/10.1016/j.mpsur.2015.01.008
Food Agriculture Organization of the United Nations. Report of an FAO Expert Consultation. Dietary protein quality evaluation in human nutrition. FAO Food and Nutrition Paper, 2011, 92(4): 1-66. Available at: https://www.sochob.cl/pdf/libros/Dietary%20protein%20quality%20evaluation%20in%20human%20nutrition.pdf
Ghani, U. Cyclitols and miscellaneous inhibitors. Alpha-Glucosidase Inhibitors. Imprint: Elsevier, Amsterdam, 2019-2020, p. 242. ISBN: 978-0-08102-779-0.
Gomez M., Gutkoski L.C., Bravo‐Nunez A. Understanding whole‐wheat flour and its effect in breads: A review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6): 3241-3265. https://doi.org/10.1111/1541-4337.12625
González C.M., Garzón R., Rosell C.M. Insects as ingredients for bakery goods. A comparison study of H. illucens, A. domestica and T. molitor flours. Innovative Food Science & Emerging Technologies, 2019, 51: 205-210. https://doi.org/10.1016/j.ifset.2018.03.021
Goulas V., Stylos E., Chatziathanasiadou M.V., Mavromoustakos T., Tzakos A.G. Functional components of carob fruit: Linking the chemical and biological space. International Journal of Molecular Sciences, 2016, 17(11): 1875. https://doi.org/10.3390/ijms17111875
Grundy S.M., Cleeman J. I., Daniels S.R., Donato K.A., Eckel R.H., Franklin B.A., Gordon D.J., Krauss R.M., Savage P.J., Smith Jr S.C., Spertus J.A., Costa F. Diagnosis and Management of the Metabolic Syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation, 2005, 112(17): 2735-2752. https://doi.org/10.1161/CIRCULATIONAHA.105.169404
Hartvigsen M.L., Gregersen S., Laerke H.N., Holst J.J., Bach Knudsen K.E., Hermansen K. Effects of concentrated arabinoxylan and β-glucan compared with refined wheat and whole grain rye on glucose and appetite in subjects with the metabolic syndrome: a randomized study. European Journal of Clinical Nutrition, 2014, 68(1): 84-90. https://doi.org/10.1038/ejcn.2013.236
Holeček M. Role of impaired glycolysis in perturbations of amino acid metabolism in diabetes mellitus. International Journal of Molecular Sciences, 2023, 24(2): 1724. https://doi.org/10.3390/ijms24021724
Hulmi J.J., Lockwood Ch.M., Stout J.R. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutrition & Metabolism, 2010, 7(1): 1-11. https://doi.org/10.1186/1743-7075-7-51
Indrani D., Prabhasankar P., Rajiv J., Rao G.V. Influence of whey protein concentrate on the rheological characteristics of dough, microstructure and quality of unleavened flat bread (parotta). Food Research International, 2007, 40(10): 1254-1260. https://doi.org/10.1016/j.foodres.2007.08.005
Jakubowicz D., Froy O. Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 diabetes. The Journal of Nutritional Biochemistry, 2013, 24(1): 1-5. https://doi.org/10.1016/j.jnutbio.2012.07.008
Jonsson K., Andersson R., Knudsen K.E.B., Hallmans G., Hanhineva K., Katina K., Kolehmainen M., Kyro C., Langton M., Nordlund E., Larke H.N., Olsen A., Poutanen K., Tjonneland An., Landberg R. Rye and health-Where do we stand and where do we go? Trends in Food Science & Technology, 2018, 79: 78-87. https://doi.org/10.1016/j.tifs.2018.06.018
Joy J.M., Lowery R.P., Wilson J.M., Purpura M., De Souza E.O., Wilson S., Kalman D.S., Dudeck J.E., Jager R. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutrition Journal, 2013, 12(1): 1-7. https://doi.org/10.1186/1475-2891-12-86
Kalhan S.C. Fatty acids, insulin resistance, and protein metabolism. The Journal of Clinical Endocrinology & Metabolism, 2009, 94(8): 2725-2727. https://doi.org/10.1210/jc.2009-1235
Kalman D.S. Amino acid composition of an organic brown rice protein concentrate and isolate compared to soy and whey concentrates and isolates. Foods, 2014, 3(3): 394-402. https://doi.org/10.3390/foods3030394
Lal M.K., Sharma E., Tiwari R.K., Devi R., Mishra U. N., Thakur R., Gupta R., Dey A., Lal P., Kumar A., Altaf M.A., Sahu D.N., Kumar R., Singh B, Sahu S.K. Nutrient-mediated perception and signalling in human metabolism: a perspective of nutrigenomics. International Journal of Molecular Sciences, 2022, 23(19): 11305. https://doi.org/10.3390/ijms231911305
Lin X., Xu Y., Pan X., Xu J., Ding Y., Sun X., Song X., Ren Y., Shan P.F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Scientific Reports, 2020, 10(1) 1-11. https://doi.org/10.1038/s41598-020-71908-9
Liu Z., Barrett E.J. Human protein metabolism: its measurement and regulation. American Journal of Physiology-Endocrinology and Metabolism, 2002, 283(6): 1105-1112. https://doi.org/10.1152/ajpendo.00337.2002
Ma J., Stevens J.E., Cukier K., Maddox A.F., Wishart J.M., Jones K.L., Clifton P.M., Horowitz M., Rayner C.K. Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care, 2009, 32(9): 1600-1602 https://doi.org/10.2337/dc09-0723
Matheswaran P., Raja L., Gani S.B. Anti-diabetic and anti-obesity effect of functionally active proteins obtained from seven edible insects. International Journal of Pharmaceutical Sciences and Research, 2020, 11(9): 4470-4478. https://doi.org/10.13040/IJPSR.0975-8232.11(9).4470-78
Mihneva V., Bogomilov I., Daskalova I. Clinic of Endocrinology and Metabolic Diseases, Military Medical Academy - Sofia, Department of Pharmacology and Toxicology, Medical University - Sofia. Prediabetes, Metabolic Syndrome and Their Relationship to Cardiovascular Risk, 2021 [in Bulgarian] Available at: https://gpnews.bg/ендокринология/преддибет-мебатолитен-синдром/
Mignone L.E., Wu T., Horowitz M., Rayner C.K. Whey protein: The “whey” forward for treatment of type 2 diabetes? World Journal of Diabetes, 2015, 6(14): 1274. https://doi.org/10.4239%2Fwjd.v6.i14.1274
Moughan P.J. Population protein intakes and food sustainability indices: the metrics matter. Global Food Security, 2021, 29: 100548. https://doi.org/10.1016/j.gfs.2021.100548
Osimani A., Milanović V., Cardinali F., Roncolini A., Garofalo C., Clementi F., Aquilanti. L. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. Innovative Food Science & Emerging Technologies, 2018, 48: 150-163. https://doi.org/10.1016/j.ifset.2018.06.007
Pal S., Radavelli-Bagatini S., Hagger M. et Ellis V. Comparative effects of whey and casein proteins on satiety in overweight and obese individuals: a randomized controlled trial. European Journal of Clinical Nutrition, 2014, 68(9): 980-986. https://doi.org/10.1038/ejcn.2014.84
Papaefstathiou E., Agapiou A., Giannopoulos S. et Kokkinofta R. Nutritional characterization of carobs and traditional carob products. Food Science & Nutrition, 2018, 6(8): 2151-2161. https://doi.org/10.1002/fsn3.776
Pfeiffer A.F., Pedersen E., Schwab U., Risérus U., Aas A.M., Uusitupa M., Thanopoulou A., Kendall C., Sievenpiper J.L., Kahleova H., Rahelic D., Salas-Salvado J., Gebauer S., Hermansen K. The effects of different quantities and qualities of protein intake in people with diabetes mellitus. Nutrients, 2020, 12(2): 365. https://doi.org/10.3390/nu12020365
Piszczyski I., Ivanova T. Biochemistry. 4th edition. Printing house: Nova Print JSC - Plovdiv, Plovdiv, 2010, p. 400, circulation 600. [in Bulgarian]
Prieto-Vázquez del Mercado P., Mojica L., Morales-Hernández N. Protein ingredients in bread: Technological, textural and health implications. Foods, 2022, 11(16), 2399. https://doi.org/10.3390/foods11162399
Salehi A., Gunnerud U., Muhammed S.J., Östman E., Holst J.J., Björck I., Rorsman P. The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutrition & metabolism, 2012, 9(1): 1-7. https://doi.org/10.1186/1743-7075-9-48
Scrimshaw N.S. Human protein requirements: a brief update. Food and Nutrition Bulletin, 1996, 17(3): 1-7. https://doi.org/10.1177/156482659601700302
Singh R.K., Chang H.W., Yan D.I., Lee K.M., Ucmak D., Wong K., Abrouk M., Farahnik B., Nakamura M., Zhu T.H., Bhutani T., Liao W. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 2017, 15(4): 1-17. https://doi.org/10.1186/s12967-017-1175-y
Soliman G.A. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients, 2019, 11(5): 1155. https://doi.org/10.3390/nu11051155
Succurro E., Pedace E., Andreozzi F., Papa A., Vizza P., Fiorentino T. V., Petricone F., Veltry P., Cascini G. L., Sesti G. Reduction in global myocardial glucose metabolism in subjects with 1-hour postload hyperglycemia and impaired glucose tolerance. Diabetes Care, 2020, 43(3): 669-676. https://doi.org/10.2337/dc19-1975
Tankova Tsv. Diabetes mellitus. Publishing house: Pradigma, Sofia, 2013, p.482. ISBN: 978-954-326-201-4. [in Bulgarian]
Thirunavukkarasu S., Taylor R., Khunti K., Tapp R.J., Raben A., Zhu R., Kapoor N., Narayan K.M.V., Ali M.K., Shaw J.E. Low-calorie diets for people with isolated impaired fasting glucose. Communications Medicine, 2024, 4(1): 35. https://doi.org/10.1038/s43856-024-00466-2
Verheyen G.R., Pieters L., Maregesi S., Van Miert S. Insects as Diet and Therapy: Perspectives on Their Use for Combating Diabetes Mellitus in Tanzania. Pharmaceuticals, 2021, 14(12): 1273. https://doi.org/10.3390/ph14121273
Wild S., Roglic G., Green A., Sicree R., King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5): 1047-1053. https://doi.org/10.2337/diacare.27.5.1047
World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. World Health Organization, 2006, p.46, ISBN: 9241594934. Available at: https://iris.who.int/bitstream/handle/10665/43588/924159?sequence=1
World Health Organization. Report of a joint FAO/WHO/UNU expert consultation. Protein and amino acid requirements in human nutrition. World Health Organization, Geneva, 2007, p. 265. ISBN: 9789241209359, 9241209356. Available at: https://iris.who.int/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf?sequence=1&isAllowed=y
World Health Organization. World Health Organization Technical Report Series 724. Printed in Switzerland. 87/7325 - Schüler SA - 2000 (R), 91/8836 - Schüler SA - 2000 (R). ISSN 0512-3054. Available at: https://www.fao.org/3/AA040E/AA040E00.htm#TOC
Wu X., Guo T., Luo F., Lin Q. Brown rice: A missing nutrient-rich health food. Food Science and Human Wellness, 2023, 12(5): 1458-1470. https://doi.org/10.1016/j.fshw.2023.02.010
Yang J., Chi Y., Burkhardt B.R., Guan Y., Wolf B.A. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutrition Reviews, 2010, 68(5): 270-279. https://doi.org/10.1111/j.1753-4887.2010.00282.x
Yu L., Nanguet Anne-L., Beta T. Comparison of antioxidant properties of refined and whole wheat flour and bread. Antioxidants, 2013, 2(4): 370-383. https://doi.org/10.3390/antiox2040370
Zhao F., Li. Y., Li C., Ban X., Cheng L., Hong Y., Zhengbiaoq G., Li Z. Insight into the regulations of rice protein on the gluten-free bread matrix properties. Food Hydrocolloids, 2022, 131: 107796. https://doi.org/10.1016/j.foodhyd.2022.107796
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Open access articles are distributed under the terms and conditions of the Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0) license:
https://creativecommons.org/licenses/by-sa/4.0
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102