Modeling of biosorption of chromium by immobilized whole cells of Aspergillus awamori NRRL 3112 Modeling of biosorption of chromium
Main Article Content
Abstract
The presence of chromium in high concentrations in industrial effluents is of major concern, being extremely toxic and non-biodegradable, thus persistent and harmful to the ecosystem. Using microorganisms for adsorption of heavy metals has emerged as a potential alternative over the conventional methods and is gaining significance due to its incontestable merits. Since fungi amass metals more than their nutritional requirement, the present study in investigation of efficiency of Aspergillus awamori NRRL 3112 biomass for sorption of chromium by means of development of an immobilised whole cell system is significant. The effect of operational parameters like initial chromium concentration, time, temperature and pH on chromium removal was studied and the efficient conditions for the process were established. Kinetics studies revealed that, the pseudo second order model was found to best represent the process with higher R2 values than others. The Langmuir and Freundlich isotherms were applied and the Langmuir isotherm was found to be the best fit. It was also established by means of thermodynamic analysis that the biosorption occurred chemically and the process was more feasible, spontaneous and efficient at lower temperatures.
Article Details
References
Aksu Z., Açıkel Ü., Kabasakal E., Tezer S. Equilibrium modelling of individual and simultaneous biosorption of chromium (VI) and nickel (II) onto dried activated sludge. Water Research Journal, 2002, 36(2): 3063-3073. https://doi.org/10.1016/S0043-1354(01)00530-9
Al-Ghouti M., Khraisheh M. A. M., Ahmad M. N. M., Allen S. Thermodynamic behavior and the effect of temperature on the removal of dyes from aqueous solutions using modified diatomite: a kinetic study. Journal of Colloid and Interface Science, 2005, 287(1): 6-13. https://doi.org/10.1016/j.jcis.2005.02.002
Alkan M., Demirbas O., Dogan M. Adsorption kinetics and thermodynamics of anionic dye onto sepiolite. Micro-porous and Mesoporous Materials, 2007, 101(3): 388-396. https://doi.org/10.1016/j.micromeso.2006.12.007
Allen S. J., Gan Q., Matthews R., Johnson P. A. Kinetic modelling of adsorption of basic dyes by kudzu. Journal of Colloids and Interface Science, 2005, 286(1):101-109. https://doi.org/10.1016/j.jcis.2004.12.043
Altaf M. M., Masood F., Malik A. Impact of long-term application of treated tannery effluents on the emergence of resistance traits in Rhizobium sp. isolated from Trifolium alexandrinum. Turkish Journal of Biology, 2008, 32(1): 1-8. http://dx.doi.org/10.4236/ajmb.2016.64015
Aravindhan R., Madhan B., Rao J. R., Nair B. U., Rama-sami T. Bioaccumulation of chromium from tannery wastewater: An approach for chrome recovery and reuse. Environmental Science and Technology, 2004, 38(1): 300-306. https://dx.doi.org/10.1021/es034427s
Arica M. Y., Arpa C., Ergene A., Bayramoglu G., Gene O. Ca-alginate as a support for Pb(II) and Zn(II) biosorp-tion with immobilized Phanerochaete chrysosporium. Carbohydrate Polymers, 2003, 52(2): 167-174. https://doi.org/10.1016/S0144-8617(02)00307-7
Arica Y., Bayramoglu G. Cr (VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinus sajor-caju: preparation and kinetic charac-terization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253(1-3): 203-211. https://doi.org/10.1016/j.colsurfa.2004.11.012
Belay A. A. Impacts of chromium from tannery effluent and evaluation of alternative treatment options. Journal of Environmental Protection, 2010, 1(1): 53-58. https://doi.org/10.4236/jep.2010.11007
Bishnoi N. R., Garima. Fungus: An alternative for bioremediation of heavy metals containing waste water: A review. Journal of Scientific and Industrial Research, 2005, 64(2): 93-100. https://doi.org/10.1016/j.cej.2007.03.004
Brown M. J. Metal Recovery and Processing. In: Biotechnology, the Science and the Business (V. Moses, R. E. Cape, D. G. Springham Eds.). CRC Press, Overseas Publishers Association N. V. 1999, рр. 623-638, Print ISBN: 978-90-5702-407-1.
Central Pollution Control Board. In: Pollution Control Acts, Rules, and Notifications Issued Thereunder (Fourth Edition). Pollution Control Law Series, Central Pollution Control Board, Ministry of Environment and Forests, NISCAIR, CSIR, New Delhi, 2006, рр. 129-131, Print ISBN: 978-0-81-8639618-7.
Chandra N., Agnihotri N., Sharma P., Bhasin S., Amritphale S. S. Separation of lead ions from aqueous solutions by adsorption at talc surface. Journal of Scientific and Industrial Research, 2005, 64(9): 674-678. http://nopr.niscair.res.in/bitstream/123456789/5116/1/JSIR%2064%289%29%20674-678.pdf
Chandrakala G., Kezia D., Naidu S. V. Optimization of chromium biosorption by Ageratum conyzoides leaf powder from aqueous solutions: equilibrium kinetics and thermodynamics. International Journal of Engineering Sciences & Research Technology, 2015,4(6): 152-163.
Chhikara S., Dhankhar R. Biosorption of Cr (VI) ions from electroplating industrial effluent using immobilized Aspergillus niger biomass. Journal of Environmental Biology, 2008, 29(5): 773-778. http://jeb.co.in/journal_issues/200809_sep08/paper_23.pdf
Eaton A. D., Clesceri L. S., Rice E. W., Greenberg A. E., Franson M. A. H. Standard Methods for the Examination of Water & Wastewater (21st Edition). Washington, D.C.: American Public Health Association - American Water Works Association - Water Environment Federation. 2005, 1200 pages. ISBN-13: 978-0875530475, ISBN-10: 0875530478
Elangovan R., Ligi P., Chandraj K. Biosorption of Cr species by aquatic weeds: Kinetics and mechanism studies. Journal of Hazardous Materials, 2008, 152(1): 100-112. https://doi.org/10.1016/j.jhazmat.2007.06.067
Foo K. Y., Hameed B. H. Insights into the modelling of adsorption isotherm systems. Chemical Engineering Journal, 2010, 156(1): 2-10. https://doi.org/10.1016/j.cej.2009.09.013
Hall K. R., Eagleton L. C., Acrivos A., Vermeulen Th. Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial and Engineering Chemistry Fundamentals, 1966, 5(2): 212-222. https://doi.org/10.1021/i160018a011
Hameed B. H., Chin L. H., Rengaraj S. Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust. Desalination, 2008, 225(1-3): 185-198. https://doi.org/10.1016/j.desal.2007.04.095
Hashem A., El-Khiraigy K. Bioadsorption of Pb (II) onto Anethum graveolens from contaminated wastewater: Equilibrium and Kinetic studies. Journal of Environmental Protection, 2013, 4(1): 108-119. http://dx.doi.org/10.4236/jep.2013.41012
Javaid A., Bajwa R. Biosorption of heavy metals using a dead macro fungus Schizophyllum commune fries: evaluation of equilibrium and kinetic models. Pakistan Journal of Botany, 2010, 42(3): 2105-2118.
Jianlong W., Yi Q. Microbial degradation of 4-chlorophenol by microorganisms entrapped in chitosan carageenan gels. Chemosphere, 1999, 38(13): 3109-3117. https://doi.org/10.1016/S0045-6535(98)00516-5
Kratochvil D., Pimental P., Volesky B. Removal of trivalent chromium by seaweed biosorbent. Environmental Science and Technology, 1998, 32(18): 2693-2698. https://doi.org/10.1021/es971073u
Li-e-Liu., Jindun L., Hongoing L., Hoqin Z., Jie L., Hongquan Z. Equilibrium thermodynamic and kinetic studies of lead (II) biosorption on sesame leaf. Bioresources, 2012, 7(3): 3555-3572. http://152.1.0.246/index.php/BioRes/article/view/BioRes_07_3_3555_Liu_LLZLZ_Equilibrium_Kinetic_Thermody_Lead_Sesame/1617
Lin K., Pan J., Chen Y., Chenga R., Xua X. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. Journal of Hazardous Materials, 2009, 161(1): 231-240. https://doi.org/10.1016/j.jhazmat.2008.03.076
Malkoc E., Nuhoglu Y., Dundar M. Adsorption of chromium (VI) on pomace. An olive oil industry waste: Batch and column studies. Journal of Hazardous Materials, 2006, 138(1): 142-151. https://doi.org/10.1016/j.jhazmat.2006.05.051
Meena A. K., Mishra G. K., Kumar S., Rajagopal C. Nagar P. N. Adsorption of Cd(II) ions from aqueous solution using different adsorbents. Indian Journal of Scientific and Industrial Research, 2004, 63(5): 410-416.
Mohanty K., Jha M., Meikap B. C., Biswas M. N. Removal of chromium (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chemical Engineering. Science, 2005, 60(11): 3049-3059. https://doi.org/10.1016/j.ces.2004.12.049
Mungasavalli D. P., Viraraghavari T. Yee-Chung Jin. Biosorption of chromium from aqueous solutions by pre-treated Aspergillus niger: batch and column studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301(1-3): 214-223. https://doi.org/10.1016/j.colsurfa.2006.12.060
Nadeem M., Mahmood A., Shaid S. A., Shah S. S., Khalid A. M., McKay G. Sorption of lead from aqueous solution by chemically modified carbon adsorbents. Journal of Hazardous Materials, 2006, 138(3): 604-613. https://doi.org/10.1016/j.jhazmat.2006.05.098
Niveditha A., Pradima J., Archna. Chromium (VI) adsorption and its kinetic studies using industrial spent biomass. International Journal of Science Engineering and Technology, 2014, 3(9): 1198-1202.
Onyancha D., Mavura W., Ngila, J. C., Ongoma P., Chacha J. Studies of chromium removal from tannery waste waters by algae biosorbent Spirogyra condensata and Rhizoclonium hieroglyphicum. Journal of Hazardous Materials, 2008, 158(2-3): 605-614. https://doi.org/10.1016/j.jhazmat.2008.02.043
Ozdemir G., Ceyhan N., Manav E. Utilization of exo-polysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions. Bioresource Technology, 2005, 96(15):1677 - 1682. https://doi.org/10.1016/j.biortech.2004.12.031
Pandey P. K., Sharma S. K., Sambi S. S. Kinetics and equilibrium study of chromium adsorption on zeolite NaX. International Journal of Environmental Science and Technology, 2010, 7(2): 395-404. http://www.bioline.org.br/pdf?st10039
Papandreou A., Stournaras C. J., Panias D. Copper and cadmium adsorption on pellets made from fired coal fly ash. Journal of Hazardous Materials, 2007, 148(3): 538-547. https://doi.org/10.1016/j.jhazmat.2007.03.020
Prakasham R. S., Merrie J. S., Sheela R., Saraswati N., Ramakrishna S. V. Biosorption of Cr VI by free and immobilised Rhizopus arrhizus. Environmental Pollution, 1999, 104(3): 421-427. https://doi.org/10.1016/S0269-7491(98)00174-2
Preetha B., Viruthagiri T. Batch and continuous biosorption of chromium (VI) by Rhizopus arrhizus. Separation and Purification Technology, 2007, 57(1): 126-133. https://doi.org/10.1016/j.seppur.2007.03.015
Rao J. R., Viraraghavan T. Biosorption of phenol from an aqueous solution by Aspergillus niger biomass. Bioresource Technology, 2002, 85(2): 165-171. https://doi.org/10.1016/S0960-8524(02)00079-2
Saha P., Chowdhury S. Insight Into Adsorption Thermo-dynamics. In: Thermodynamics (Prof. Mizutani Tadashi Ed.). InTech. 2011, pp. 349-365, Print ISBN: 978-953-307-544-0. https://doi.org/10.5772/13474
Sari A., Tuzen M. Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 2008, 160(2-3): 349-355. https://doi.org/10.1016/j.jhazmat.2008.03.005
Secil O., Hamarat S, , Guven B. Studies on the applicability of alginate entrapped Chryseomonas luteola TEM 05 for heavy metal biosorption. Journal of Hazardous Materials, 2007, 146(1-2): 417-420. https://doi.org/10.1016/j.jhazmat.2007.03.005
Senturk I., Buyukgungor H. Equilibrium and kinetic studies on the biosorption of 2-chlorophenol and 4-chlorophenol by live Aspergillus niger. Ekoloji Dergisi, 2013, 22(88): 1-12.
Srihari V., Das A. Comparative studies on adsorptive removal of phenol by three agro-based carbons: equilibrium and isotherm studies. Ecotoxicology and Environmental Safety, 2008, 71(1): 274-283. https://doi.org/10.1016/j.ecoenv.2007.08.008
Srivastava S., Thakur I. S. Biosorption potency of Aspergillus niger for removal of chromium (VI). Current Microbiology, 2006, 53(3): 232-237. https://doi.org/10.1007/s00284-006-0103-9
Tan I. A. W., Ahmad A. L., Hameed B. H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 2008, 154(1-3): 337-346. https://doi.org/10.1016/j.jhazmat.2007.10.031
Veglio F., Beolchini F. Removal of metals by biosorption: a review. Hydrometallurgy, 1997, 44(3): 301-316. https://doi.org/10.1016/S0304-386X(96)00059-X
Veglio F., Esposito A., Reverberi A. P. Copper adsorption on calcium alginate beads: equilibrium pH-related models. Hydrometallurgy, 2002, 65(1): 43-57. https://doi.org/10.1016/S0304-386X(02)00064-6
Volesky B., Holzen Z. R. Biosorption of heavy metals. Biotechnology Progress, 1995, 11(3): 235-250. https://doi.org/10.1021/bp00033a001
Wu J., Yu H. Q. Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 2006, 137(1): 498-508. https://doi.org/10.1016/j.jhazmat.2006.02.026
Yu L. J., Shukla S. S., Dorris K. L., Shukla A. Margrave J. L. Adsorption of chromium from aqueous solutions by maple sawdust. Journal of Hazardous Materials, 2003, 100(1-3): 53-63. https://doi.org/10.1016/S0304-3894(03)00008-6
Zhenga H., Liua D., Zhenga Y., Liang S., Liua Z. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. Journal of Hazardous Materials, 2009, 167(1-3):141-147. https://doi.org/10.1016/j.jhazmat.2008.12.093

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Open access articles are distributed under the terms and conditions of the Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0) license:
https://creativecommons.org/licenses/by-sa/4.0
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102