A review of fermentation and the nutritional requirements for effective growth media for lactic acid bacteria Media for effective growth of lactic acid bacteria
Main Article Content
Abstract
Lactic acid bacteria are useful microorganisms that are well-known to have probiotic effects and provide foods with unique sensory qualities such as aroma and taste (flavor). Probiotic bacteria such as Lactobacillus delbrueckii subsp. bulgaricus are found in many fermented food products and confer several human health benefits. Probiotic strains help to strengthen and boost the human immune system, increasing the body's resistance to a wide range of disease conditions. The food industry’s effort to meet customers' sensory and health demands in dairy and fermented food items has boosted the need for probiotic starter cultures with superior performance and health-beneficial qualities. One of the crucial dairy starter cultures for producing fermented dairy products such as yogurt and cheese is lactic acid bacteria, particularly L. bulgaricus. An enhanced fermentation media improves the generation of essential metabolites, such as lactic acid and the sensory attribute of fermented food. Therefore, this review aims to present an overview and the importance of lactic acid bacteria in fermentation. The review also presents information on specific nutritional requirements of growth media for fermentation purposes as well as new classifications and views on the present commercial applications of these healthy bacteria.
Article Details
References
Ayad A.A., El-Rab D.G., Shahbazi A., Worku M., Schimmel K., Ejimakor G., Ibrahim S.A. Using date palm (Phoenix dactylifera L.) by-products to cultivate Lactobacillus reuteri spp. Journal of Food Research, 2016, 5(5), 77-81. http://dx.doi.org/10.5539/jfr.v5n5p77
Ayivi R.D., Ibrahim S.A. Lactic acid bacteria: an essential probiotic and starter culture for the production of yogurt. International Journal of Food Science and Technology, 2022, 57(11): 7008-7025. https://doi.org/10.1111/ijfs.16076
Ayivi R. D., Gyawali R., Krastanov A., Aljaloud, S.O., Worku M., Tahergorabi R., Ibrahim S.A. Lactic acid bacteria: Food safety and human health applications. Dairy, 2020, 1(3): 202-232. https://doi.org/10.3390/dairy1030015
Binda S., Ouwehand A.C. Lactic Acid Bacteria for Fermented Dairy Products. Lactic Acid Bacteria (5th Edition), 2019, pp. 175-198. eBook ISBN: 9780429057465 https://doi.org/10.1201/9780429057465-12
Bintsis T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. Aims Microbiology, 2018, 4(4): 665-684. https://doi.org/10.3934/Microbiol.2018.4.665
Blandino A., Al-Aseeri M.E., Pandiella S.S., Cantero D., Webb C. Cereal-based fermented foods and beverages. Food research international, 2003, 36(6): 527-543. https://doi.org/10.1016/S0963-9969(03)00009-7
Buratti S., Cappa C., Benedetti S., and Giovanelli G. Influence of cooking conditions on nutritional properties and sensory characteristics interpreted by e-senses: Case-study on selected vegetables. Foods, 2020, 9(5): 607. https://doi.org/10.3390/foods9050607
Calderon M., Loiseau G., Guyot J.P. Nutritional requirements and simplified cultivation medium to study growth and energetics of a sourdough lactic acid bacterium Lactobacillus fermentum Ogi E1 during heterotactic fermentation of starch. Journal of Applied Microbiology, 2001, 90(4): 508-516. https://doi.org/10.1046/j.1365-2672.2001.01272.x
Capurso C. Whole-grain intake in the Mediterranean diet and a low protein to carbohydrates ratio can help to reduce mortality from cardiovascular disease, slow down the progression of aging, and to improve lifespan: A review. Nutrients, 2021, 13(8): 25-40. https://doi.org/10.3390/nu13082540
Castelli H., Du Vale L. Handbook on Cheese: Production, Chemistry and Sensory Properties. Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2013.
Charalampopoulos D., Pandiella S., Webb C. Growth studies of potentially probiotic lactic acid bacteria in cereal‐based substrates. Journal of Applied Microbiology, 2002, 92(5): 851–859. https://doi.org/10.1046/j.1365-2672.2002.01592.x
Chaves-López C., Serio A., Martuscelli M., Paparella A., Osorio-Cadavid E., Suzzi G. Microbiological characteristics of kumis, a traditional fermented Colombian milk, with particular emphasis on the enterococci population. Food Microbiology, 2011, 28(5): 1041-1047. https://doi.org/10.1016/j.fm.2011.02.006
Chelule P.K., Mokoena M.P., Gqaleni N. Advantages of traditional lactic acid bacteria fermentation of food in Africa. Current research, technology and education topics in applied microbiology and microbial biotechnology, 2010, pp. 1160-1167.
Chen G.C., Wang Y., Tong X., Szeto I.M., Smit G., Li Z.N., Qin L.Q. Cheese consumption and risk of cardiovascular disease: a meta-analysis of prospective studies. European Journal of Nutrition, 2017, 56(8): 2565-2575. https://doi.org/10.1007/s00394-016-1292-z
Chen Y., Liu W., Xue J., Yang J., Chen X., Shao Y., Zhang H. Angiotensin-converting enzyme inhibitory activity of Lactobacillus helveticus strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9. Journal of Dairy Science, 2014, 97(11): 6680-6692. https://doi.org/10.3168/jds.2014-7962
Compagno C., Dashko S., Piškur J. Introduction to carbon metabolism in yeast. Molecular mechanisms in yeast carbon metabolism. 2014, pp.1-19. https://doi.org/10.1007/978-3-642-55013-3_1
Courtin P., Rul F. Interactions between microorganisms in a simple ecosystem: yogurt bacteria as a study model. Le Lait, 2004, 84(1-2): 125-134. https://doi.org/10.1051/lait:2003031
De Man J.C., Rogosa D., Sharpe M.E., A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology, 1960, 23(1): 130-135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
De Souza R.R., Bergamasco R., da Costa S.C., Feng X., Faria S.H.B., Gimenes M.L., Recovery and purification of lactose from the whey. Chemical Engineering and Processing: Process Intensification, 2010, 49(11): 1137-1143. https://doi.org/10.1016/j.cep.2010.08.015
Dullius A., Goettert M.I., de Souza C.F.V. Whey protein hydrolysates as a source of bioactive peptides for functional foods - Biotechnological facilitation of industrial scale-up. Journal of Functional Foods, 2018, 42(3): 58–74. https://doi.org/10.1016/j.jff.2017.12.063
Farvid M.S., Malekshah A.F., Pourshams A., Poustchi H., Sepanlou S.G., Sharafkhah M., Malekzadeh R. Dairy food intake and all-cause, cardiovascular disease, and cancer mortality: the Golestan Cohort Study. American Journal of Epidemiology, 2017, 185(8): 697-711. https://doi.org/10.1093/aje/kww139
Fisberg M., Machado R. History of yogurt and current patterns of consumption. Nutrition Reviews, 2015, 73(1): 4–7 https://doi.org/10.1093/nutrit/nuv020
Foucaud C., Francois A., Richard J. Development of a chemically defined medium for the growth of Leuconostoc mesenteroides. Applied and Environmental Microbiology, 1997, 63(1): 301-304. https://doi.org/10.1128/aem.63.1.301-304.1997
Fox P.F., Guinee T.P., Cogan T.M., McSweeney P.L., Fundamentals of cheese science. Boston, MA, USA: Springer, 2017. Available at: https://www.researchgate.net/profile/Atef-Abou-El-Nour/publication/286119901_CHEESES_Processed_Cheese/links/60e2e4eca6fdccb74506d072/CHEESES-Processed-Cheese.pdf
Fraqueza M.J., Patarata L. Fermented meat products: From technology to quality control. Fermented food products (First edition), 2020, pp. 197-238. eBook – 9780429274787. https://doi.org/10.1201/9780429274787-13
Ghasemi M., Najafpour G., Rahimnejad M., Beigi P.A., Sedighi M., Hashemiyeh B. Effect of different media on production of lactic acid from whey by Lactobacillus bulgaricus. African Journal of Biotechnology, 2009, 8(1): 81-84. Available online at: http://www.academicjournals.org/AJB
Gibson A.M., Bratchell N., Roberts T.A. Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. International Journal of Food Microbiology, 1998, 6(2): 155-178. https://doi.org/10.1016/0168-1605(88)90051-7
Gijsbers L. Ding E.L., Malik V.S., De Goede J., Geleijnse J.M., Soedamah-Muthu S.S. Consumption of dairy foods and diabetes incidence: a dose-response meta-analysis of observational studies. The American Journal of clinical nutrition, 2016, 103(4): 1111-1124. https://doi.org/10.3945/ajcn.115.123216
Gille D., Schmid A., Walther B., Vergères G. Fermented food and non-communicable chronic diseases: a review. Nutrients, 2018, 10(4): 448. https://doi.org/10.3390/nu10040448
Gomes da Cruz A Buriti F.C.A., Batista de Souza C.H., Fonseca Faria J.A., Isay Saad S.M. Probiotic cheese: Health benefits, technological and stability aspects. Trends in Food Science and Technology, 2009, 20(8): 344-354. https://doi.org/10.1016/j.tifs.2009.05.001
Grattepanche F., Miescher-Schwenninger S., Meile L., Lacroix C. Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Science and Technology, 2008, 88(4-5): 421-444.
https://doi.org/10.1051/dst:2008013
Griffiths M.W., Tellez A.M. Lactobacillus helveticus: the proteolytic system. Frontiers in Microbiology, 2013, 4(3): 30.
https://doi.org/10.3389/fmicb.2013.00030
Guarner F., Perdigon G., Corthier G., Salminen S., Koletzko B., Morelli L. Should yoghurt cultures be considered probiotics? British Journal of Nutrition, 2005, 93(6): 783-786. https://doi.org/10.1079/BJN20051428
Hachmeister K.A., Fung D.Y.C. Tempeh: A Mold-modified indigenous fermented food made from soybeans and/or cereal grains. Critical Reviews in Microbiology, 1993, 19(3): 137-188. https://doi.org/10.3109/10408419309113527
Hati S., Mandal S., Prajapat J.B. Novel Starters for Value Added Fermented Dairy Products. Current Research and Nutrition, 2013, 1(8): 83-91. https://doi.org/10.12944/CRNFSJ.1.1.09
Hayek A.S., Ibrahim A.S. Current limitations and challenges with lactic acid bacteria: a review. Food and Nutrition Sciences, 2013. https://doi.org/10.4236/fns.2013.411A010
Hayek S.A., Gyawali R., Aljaloud S.O., Krastanov A., Ibrahim S.A. Cultivation media for lactic acid bacteria used in dairy products. Journal of Dairy Research, 2019, 86(4): 490-502. https://doi.org/10.1017/S002202991900075X
Hayek S.A., Shahbazi A., Awaisheh S.S., Shah N.P., Ibrahim S.A. Sweet potatoes as a basic component in developing a medium for the cultivation of lactobacilli. Bioscience, Biotechnology, and Biochemistry, 2013, 77(11): 2248-2254. https://doi.org/10.1271/bbb.130508
Hébert E.M., Raya R.R., Savoy de Giori G. Evaluation of minimal nutritional requirements of lactic acid bacteria used in functional foods. Environmental microbiology: Methods and protocols. 2004(1): 139-48. https://doi.org/10.1385/1-59259-765-3:139
Hemsworth J., Hekmat S., Reid G. The development of micronutrient supplemented probiotic yogurt for people living with HIV: Laboratory testing and sensory evaluation. Innovative Food Science and Emerging Technologies, 2011, 12(1): 79-84. https://doi.org/10.1016/j.ifset.2010.11.004
Hofer A., Herwig C. Quantitative determination of nine water‐soluble vitamins in the complex matrix of corn steep liquor for raw material quality assessment. Journal of Chemical Technology and Biotechnology, 2017, 92(8): 2106-2113. https://doi.org/10.1002/jctb.5211
Hui Y.H., Meunier-Goddik L., Josephsen J., Nip W.K., Stanfield P.S. Handbook of food and beverage fermentation technology (First Edition). CRC Press, 2004, eBook ISBN: 9780429223952
Ibrahim S.A., Ayad A.A., Williams L.L., Ayivi R.D., Gyawali R., Krastanov A., Aljaloud S.O. Date fruit: A review of the chemical and nutritional compounds, functional effects and food application in nutrition bars for athletes. International Journal of Food Science and Technology, 2021, 56(4): 1503-1513. https://doi.org/10.1111/ijfs.14783
Iranmanesh M., Ezzatpanah H., Mojgani N. Antibacterial activity and cholesterol assimilation of lactic acid bacteria isolated from traditional Iranian dairy products. LWT-Food Science and Technology, 2004, 58(2): 355-359. https://doi.org/10.1016/j.lwt.2013.10.005
Ivanova, M., Dessev, T., Dinkov, K., Dimitrova-Dicheva, M., Menkov, N., and Bogdanova, E. Comparative study between kashkaval from raw milk and chilled curd. Food Science and Applied Biotechnology, 2023, 6(1): 47-55. https://doi.org 10.30721/fsab2023.v6.i1.xx
Jelen, P. Whey processing. Utilization and Products. Academic Press: London, UK, 2003. https://doi.org/10.1016/B0-12-227235-8/00511-3
Karimi R., Mortazavian A.M., Amiri-Rigi A. Selective enumeration of probiotic microorganisms in cheese. Food Microbiology, 2012, 29(1): 1–9. https://doi.org/10.1016/j.fm.2011.08.008
Kok C.R., Hutkins R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutrition Reviews, 2018, 76(1): 4-15. https://doi.org/10.1093/nutrit/nuy056
Kongo J.M. Lactic acid bacteria as starter cultures for cheese processing: past, present and future developments. Lactic acid bacteria-R and D for food, health and livestock purposes, 2013, pp. 1-22. ISBN: 978-953-51-0955-6http://doi.org/10.5772/55937
Kristinsson H.G., Rasco B.A. Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in Food Science and Nutrition, 2000, 40(1): 43-81. https://doi.org/10.1080/10408690091189266
Leroy F. De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology, 2004, 15(2): 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
Letort C., Juillard V. Development of a minimal chemically defined medium for the exponential growth of Streptococcus thermophilus. Journal of Applied Microbiology, 2001, 91(6): 1023-1029. https://doi.org/10.1046/j.1365-2672.2001.01469.x
Liu R., Shen F. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresource Technology, 2008, 99(4): 847-854. https://doi.org/10.1016/j.biortech.2007.01.009
Liu S.N., Han Y., Zhou Z.J. Lactic acid bacteria in traditional fermented Chinese foods. Food Research International, 2011, 44(3): 643-651. http://doi.org/10.1016/j.foodres.2010.12.034
Lomholt S.B., Qvist K.B. The formation of cheese curd. The technology of cheesemaking (Second Edition), 1999, pp. 66-98. http://doi.org/10.1002/9781444323740.ch4
Lourens-Hattingh A., Viljoen B.C. Yogurt as probiotic carrier food. International Dairy Journal, 2001, 11(1–2): 1–17. https://doi.org/10.1016/S0958-6946(01)00036-X
Lowrie R.J., Pearce L.E. Plating efficiency of bacteriophages of lactic streptococci. New Zealand Journal Dairy Science and Technology, 1971, pp. 166-171
Lu Z., Fleming H.P., McFeeterss R.F. Effects of fruit size on fresh cucumber composition and the chemical and physical consequences of fermentation. Journal of Food Science, 2002, 67(8): 2934– 2939 https://doi.org/10.1111/j.1365-2621.2002.tb08841.x
Marette A., Picard-Deland É., Fernandez M.A. Yogurt: roles in nutrition and impacts on health. CRC Press (First Edition), 2017, eBook ISBN: 9781315390321
Mathara J. M., Schillinger U., Kutima P. M., Mbugua S. K., Holzapfel W.H. Isolation, identification and characterization of the dominant microorganisms of kule naoto: the Maasai traditional fermented milk in Kenya. International Journal of Food Microbiology, 2004, 94(3): 269-278. https://doi.org/10.1016/j.ijfoodmicro.2004.01.008
McLaughlin H.L. Lesions of the musculotendinous cuff of the shoulder: III. Observations on the pathology, course and treatment of calcific deposits. Annals of Surgery, 1946, 124(2): 354-62, PMID:17858839
Mo H., Zhu Y., Chen Z. Microbially fermented tea–a potential source of natural food preservatives. Trends in Food Science and Technology, 2008, 19(3): 124-130. https://doi.org/10.1016/j.tifs.2007.10.001
Mokoena M.P., Chelule P.K., Gqaleni N. Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal. Journal of Food Protection, 2005, 68(10): 2095-2099. https://doi.org/10.4315/0362-028X-68.10.2095
Mollea C.; Marmo L.; Bosco F. Valorisation of cheese whey, a by-product from the dairy industry. In Food Industry, IntechOpen: London, UK, 2013. https://doi.org/10.5772/53159
Olasupo N.A., Olukoya D.K., Odunfa S.A. Identification of Lactobacillus species associated with selected African fermented foods. Zeitschrift Fur Naturforschung. Journal of Biosciences, 1997, 52(1–2): 105–108. https://doi.org/10.1515/znc-1997-1-218
Oyeniran A., Ibrahim S. A., Gyawali R., Tahergorabi R., Zimmerman T., Krastanov A. A modified reinforced clostridial medium for the isolation and enumeration of Lactobacillus delbrueckii ssp. bulgaricus in a mixed culture. Journal of Dairy Science, 2020, 103(6): 5030-5042. https://doi.org/10.3168/jds.2019-17894
Panesar P.S. Fermented Dairy Products: Starter Cultures and Potential Nutritional Benefits. Food and Nutrition Sciences, 2011, 2(1): 47–51. https://doi.org/10.4236/fns.2011.21006
Pires, A.F., Marnotes N.G., Rubio O.D., Garcia A.C., and Pereira C.D. Dairy by-products: A review on the valorization of whey and second cheese whey. Foods, 2021, 10(5): 1067. https://doi.org/10.3390/foods10051067
Polak-Berecka M., Waśko A., Kordowska-Wiater M., Targoński Z., Kubik-Komar A. Application of response surface methodology to the enhancement of biomass production by Lactobacillus rhamnosus E/N. Brazilian Journal of Microbiology, 2011, 42(4): 1485-1494. https://doi.org/10.1590/S1517-83822011000400035
Rai A.K., Sanjukta S., Jeyaram K. Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Critical Reviews in Food Science and Nutrition, 2017, 57(13): 2789-2800. https://doi.org/10.1080/10408398.2015.1068736
Rebah F.B., Miled N. Fish processing wastes for microbial enzyme production: a review. Biotech 3, 2013, 3(4): 255–265. https://doi.org/10.1007/s13205-012-0099-8
Rul F. Yogurt: Microbiology, organoleptic properties and probiotic potential. Part II: Technological Interventions, CRC Press, 2017, pp. 525, ISBN: 9781138637849
Safari R., Motamedzadegan A., Ovissipour M., Regenstein J. M., Gildberg A., Rasco B. Use of hydrolysates from yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology, 2012, 5(1):73–79. https://doi.org/10.1007/s11947-009-0225-8
Sawatari Y., Hirano T., Yokota A. Development of food-grade media for the preparation of Lactobacillus plantarum starter culture. The Journal of General and Applied Microbiology, 2006, 52(6): 349-356. https://doi.org/10.2323/jgam.52.349
Sekar R., Selvasekaran P., Kar A., Varalwar T., Godli C., Chidambaram R. Lactose-free food products for lactose intolerant children. Food Science, Technology and Nutrition for babies and children. 2020, pp. 143-68. https://doi.org/10.1007/978-3-030-35997-3_7
Smithers G.W. Whey-ing up the options - Yesterday, today and tomorrow. International Dairy Journal, 2015, 48(9): 2–14. https://doi.org/10.1016/j.idairyj.2015.01.011
Stankov S., Fidan H., Dincheva I., Balabanov A., and Petrova I. Changes in physicochemical, microbiological and fatty acid composition during the ripening period of artisan sheep cheese from Bulgaria. Food Science and Applied Biotechnology, 2023, 6(1): 38-46. https://doi.org/10.30721/fsab2023.v6.i1.218
Steinkraus K.H. Lactic acid fermentation. Applications of biotechnology to traditional fermented foods. National Academies Press (US), 1992. https://doi.org/10.17226/1939
Studenica A., Märtlbauer E., and Mulliqi-Osmani, G. The prevalence of bacterial contaminants in artisanal cheese sold in informal markets. the case of Kosovo. Food Science and Applied Biotechnology,2022, 5(1), 77-86. https://doi.org/10.30721/fsab2022.v5.i1.168
Tamime A. Y., Robinson R. K. Tamime and Robinson's yogurt: Science and Technology. Elsevier, 2017, eBook ISBN: 9781845692612
Tharmaraj N., Shah N. Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and propionibacteria. Journal of Dairy Science, 2003, 86(7): 2288–2296. https://doi.org/10.3168/jds.S0022-0302(03)73821-1
Ucar R. A., Pérez‐Díaz I. M., Dean L. L. Gentiobiose and cellobiose content in fresh and fermenting cucumbers and utilization of such disaccharides by lactic acid bacteria in fermented cucumber juice medium. Food Science and Nutrition, 2020, 8(11): 5798-5810. https://doi.org/10.1002/fsn3.1830
UmaMaheswari T., Anbukkarasi K., Hemalatha T., and Singh, R. GTG5 fingerprinting of native Streptococcus thermophilus strains and its authentication by principal component analysis–A road to value added commercial yoghurt starter cultures. International Dairy Journal, 2020, 122(10): 105161. https://doi.org/10.1016/j.idairyj.2021.105161
Ummadi M.S., Curic-Bawden M. Use of protein hydrolysates in industrial starter culture fermentations, in Protein Hydrolysates in Biotechnology (First Edition), Springer, Dordrecht, 2008, pp. 91-114. https://doi.org/10.1007/978-1-4020-6674-0_6
Vázquez J.A., González M., Murado M.A. Peptones from auto hydrolysed fish viscera for nisin and pediocin production. Journal of Biotechnology, 2004, 112(3): 299-311. https://doi.org/10.1016/j.jbiotec.2004.04.011
Wegkamp A., Teusink B., De Vos W.M., Smid E.J. Development of a minimal growth medium for Lactobacillus plantarum. Letters in Applied microbiology, 2010, 50(1): 57-64. https://doi.org/10.1111/j.1472-765X.2009.02752.x
Weiss N., Schillinger U., Kandler O. Lactobacillus lactis, Lactobacillus leichmannii and Lactobacillus bulgaricus, subjective synonyms of Lactobacillus delbrueckii, and description of Lactobacillus delbrueckii subsp. lactis comb. nov. and Lactobacillus delbrueckii subsp. bulgaricus comb. nov. Systematic and Applied microbiology, 1983, 4(4): 552-557. https://doi.org/10.1016/S0723-2020(83)80012-5
Widyastuti Y.R., Febrisiantosa A. The Role of Lactic Acid Bacteria in Milk Fermentation. Food and Nutrition Sciences, 2004, 5(4): 435–442. https://doi.org/10.4236/fns.2014.54051
Yeboah P. J., Wijemanna N. D., Eddin A. S., Williams L. L., Ibrahim S. A. Lactic Acid Bacteria: Review on the Potential Delivery System as an Effective Probiotic. In Dairy Processing - From Basics to Advances, 2023, IntechOpen, London, United Kingdom. https://doi.org/10.5772/intechopen.111776
Yu L., Lei T., Ren X., Pei X., Feng Y. Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochemical Engineering Journal, 2008, 39(3): 496-502. https://doi.org/10.1016/j.bej.2007.11.008

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Open access articles are distributed under the terms and conditions of the Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0) license:
https://creativecommons.org/licenses/by-sa/4.0
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102