Main Article Content

Philip Junior Yeboah Salam A Ibrahim Albert Krastonov

Abstract

Lactic acid bacteria are useful microorganisms that are well-known to have probiotic effects and provide foods with unique sensory qualities such as aroma and taste (flavor). Probiotic bacteria such as Lactobacillus delbrueckii subsp. bulgaricus are found in many fermented food products and confer several human health benefits. Probiotic strains help to strengthen and boost the human immune system, increasing the body's resistance to a wide range of disease conditions. The food industry’s effort to meet customers' sensory and health demands in dairy and fermented food items has boosted the need for probiotic starter cultures with superior performance and health-beneficial qualities. One of the crucial dairy starter cultures for producing fermented dairy products such as yogurt and cheese is lactic acid bacteria, particularly L. bulgaricus. An enhanced fermentation media improves the generation of essential metabolites, such as lactic acid and the sensory attribute of fermented food. Therefore, this review aims to present an overview and the importance of lactic acid bacteria in fermentation. The review also presents information on specific nutritional requirements of growth media for fermentation purposes as well as new classifications and views on the present commercial applications of these healthy bacteria.

Article Details

References

Aspmo S.I., Horn S.J., Eijsink V.G. Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Process Biochemistry, 2005, 40(12): 3714-3722. https://doi.org/10.1016/j.procbio.2005.05.004

Ayad A.A., El-Rab D.G., Shahbazi A., Worku M., Schimmel K., Ejimakor G., Ibrahim S.A. Using date palm (Phoenix dactylifera L.) by-products to cultivate Lactobacillus reuteri spp. Journal of Food Research, 2016, 5(5), 77-81. http://dx.doi.org/10.5539/jfr.v5n5p77

Ayivi R.D., Ibrahim S.A. Lactic acid bacteria: an essential probiotic and starter culture for the production of yogurt. International Journal of Food Science and Technology, 2022, 57(11): 7008-7025. https://doi.org/10.1111/ijfs.16076

Ayivi R. D., Gyawali R., Krastanov A., Aljaloud, S.O., Worku M., Tahergorabi R., Ibrahim S.A. Lactic acid bacteria: Food safety and human health applications. Dairy, 2020, 1(3): 202-232. https://doi.org/10.3390/dairy1030015

Binda S., Ouwehand A.C. Lactic Acid Bacteria for Fermented Dairy Products. Lactic Acid Bacteria (5th Edition), 2019, pp. 175-198. eBook ISBN: 9780429057465 https://doi.org/10.1201/9780429057465-12

Bintsis T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. Aims Microbiology, 2018, 4(4): 665-684. https://doi.org/10.3934/Microbiol.2018.4.665

Blandino A., Al-Aseeri M.E., Pandiella S.S., Cantero D., Webb C. Cereal-based fermented foods and beverages. Food research international, 2003, 36(6): 527-543. https://doi.org/10.1016/S0963-9969(03)00009-7

Buratti S., Cappa C., Benedetti S., and Giovanelli G. Influence of cooking conditions on nutritional properties and sensory characteristics interpreted by e-senses: Case-study on selected vegetables. Foods, 2020, 9(5): 607. https://doi.org/10.3390/foods9050607

Calderon M., Loiseau G., Guyot J.P. Nutritional requirements and simplified cultivation medium to study growth and energetics of a sourdough lactic acid bacterium Lactobacillus fermentum Ogi E1 during heterotactic fermentation of starch. Journal of Applied Microbiology, 2001, 90(4): 508-516. https://doi.org/10.1046/j.1365-2672.2001.01272.x

Capurso C. Whole-grain intake in the Mediterranean diet and a low protein to carbohydrates ratio can help to reduce mortality from cardiovascular disease, slow down the progression of aging, and to improve lifespan: A review. Nutrients, 2021, 13(8): 25-40. https://doi.org/10.3390/nu13082540

Castelli H., Du Vale L. Handbook on Cheese: Production, Chemistry and Sensory Properties. Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2013.

Charalampopoulos D., Pandiella S., Webb C. Growth studies of potentially probiotic lactic acid bacteria in cereal‐based substrates. Journal of Applied Microbiology, 2002, 92(5): 851–859. https://doi.org/10.1046/j.1365-2672.2002.01592.x

Chaves-López C., Serio A., Martuscelli M., Paparella A., Osorio-Cadavid E., Suzzi G. Microbiological characteristics of kumis, a traditional fermented Colombian milk, with particular emphasis on the enterococci population. Food Microbiology, 2011, 28(5): 1041-1047. https://doi.org/10.1016/j.fm.2011.02.006

Chelule P.K., Mokoena M.P., Gqaleni N. Advantages of traditional lactic acid bacteria fermentation of food in Africa. Current research, technology and education topics in applied microbiology and microbial biotechnology, 2010, pp. 1160-1167.

Chen G.C., Wang Y., Tong X., Szeto I.M., Smit G., Li Z.N., Qin L.Q. Cheese consumption and risk of cardiovascular disease: a meta-analysis of prospective studies. European Journal of Nutrition, 2017, 56(8): 2565-2575. https://doi.org/10.1007/s00394-016-1292-z

Chen Y., Liu W., Xue J., Yang J., Chen X., Shao Y., Zhang H. Angiotensin-converting enzyme inhibitory activity of Lactobacillus helveticus strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9. Journal of Dairy Science, 2014, 97(11): 6680-6692. https://doi.org/10.3168/jds.2014-7962

Compagno C., Dashko S., Piškur J. Introduction to carbon metabolism in yeast. Molecular mechanisms in yeast carbon metabolism. 2014, pp.1-19. https://doi.org/10.1007/978-3-642-55013-3_1

Courtin P., Rul F. Interactions between microorganisms in a simple ecosystem: yogurt bacteria as a study model. Le Lait, 2004, 84(1-2): 125-134. https://doi.org/10.1051/lait:2003031

De Man J.C., Rogosa D., Sharpe M.E., A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology, 1960, 23(1): 130-135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x

De Souza R.R., Bergamasco R., da Costa S.C., Feng X., Faria S.H.B., Gimenes M.L., Recovery and purification of lactose from the whey. Chemical Engineering and Processing: Process Intensification, 2010, 49(11): 1137-1143. https://doi.org/10.1016/j.cep.2010.08.015

Dullius A., Goettert M.I., de Souza C.F.V. Whey protein hydrolysates as a source of bioactive peptides for functional foods - Biotechnological facilitation of industrial scale-up. Journal of Functional Foods, 2018, 42(3): 58–74. https://doi.org/10.1016/j.jff.2017.12.063

Farvid M.S., Malekshah A.F., Pourshams A., Poustchi H., Sepanlou S.G., Sharafkhah M., Malekzadeh R. Dairy food intake and all-cause, cardiovascular disease, and cancer mortality: the Golestan Cohort Study. American Journal of Epidemiology, 2017, 185(8): 697-711. https://doi.org/10.1093/aje/kww139

Fisberg M., Machado R. History of yogurt and current patterns of consumption. Nutrition Reviews, 2015, 73(1): 4–7 https://doi.org/10.1093/nutrit/nuv020

Foucaud C., Francois A., Richard J. Development of a chemically defined medium for the growth of Leuconostoc mesenteroides. Applied and Environmental Microbiology, 1997, 63(1): 301-304. https://doi.org/10.1128/aem.63.1.301-304.1997

Fox P.F., Guinee T.P., Cogan T.M., McSweeney P.L., Fundamentals of cheese science. Boston, MA, USA: Springer, 2017. Available at: https://www.researchgate.net/profile/Atef-Abou-El-Nour/publication/286119901_CHEESES_Processed_Cheese/links/60e2e4eca6fdccb74506d072/CHEESES-Processed-Cheese.pdf

Fraqueza M.J., Patarata L. Fermented meat products: From technology to quality control. Fermented food products (First edition), 2020, pp. 197-238. eBook – 9780429274787. https://doi.org/10.1201/9780429274787-13

Ghasemi M., Najafpour G., Rahimnejad M., Beigi P.A., Sedighi M., Hashemiyeh B. Effect of different media on production of lactic acid from whey by Lactobacillus bulgaricus. African Journal of Biotechnology, 2009, 8(1): 81-84. Available online at: http://www.academicjournals.org/AJB

Gibson A.M., Bratchell N., Roberts T.A. Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. International Journal of Food Microbiology, 1998, 6(2): 155-178. https://doi.org/10.1016/0168-1605(88)90051-7

Gijsbers L. Ding E.L., Malik V.S., De Goede J., Geleijnse J.M., Soedamah-Muthu S.S. Consumption of dairy foods and diabetes incidence: a dose-response meta-analysis of observational studies. The American Journal of clinical nutrition, 2016, 103(4): 1111-1124. https://doi.org/10.3945/ajcn.115.123216

Gille D., Schmid A., Walther B., Vergères G. Fermented food and non-communicable chronic diseases: a review. Nutrients, 2018, 10(4): 448. https://doi.org/10.3390/nu10040448

Gomes da Cruz A Buriti F.C.A., Batista de Souza C.H., Fonseca Faria J.A., Isay Saad S.M. Probiotic cheese: Health benefits, technological and stability aspects. Trends in Food Science and Technology, 2009, 20(8): 344-354. https://doi.org/10.1016/j.tifs.2009.05.001

Grattepanche F., Miescher-Schwenninger S., Meile L., Lacroix C. Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Science and Technology, 2008, 88(4-5): 421-444.

https://doi.org/10.1051/dst:2008013

Griffiths M.W., Tellez A.M. Lactobacillus helveticus: the proteolytic system. Frontiers in Microbiology, 2013, 4(3): 30.

https://doi.org/10.3389/fmicb.2013.00030

Guarner F., Perdigon G., Corthier G., Salminen S., Koletzko B., Morelli L. Should yoghurt cultures be considered probiotics? British Journal of Nutrition, 2005, 93(6): 783-786. https://doi.org/10.1079/BJN20051428

Hachmeister K.A., Fung D.Y.C. Tempeh: A Mold-modified indigenous fermented food made from soybeans and/or cereal grains. Critical Reviews in Microbiology, 1993, 19(3): 137-188. https://doi.org/10.3109/10408419309113527

Hati S., Mandal S., Prajapat J.B. Novel Starters for Value Added Fermented Dairy Products. Current Research and Nutrition, 2013, 1(8): 83-91. https://doi.org/10.12944/CRNFSJ.1.1.09

Hayek A.S., Ibrahim A.S. Current limitations and challenges with lactic acid bacteria: a review. Food and Nutrition Sciences, 2013. https://doi.org/10.4236/fns.2013.411A010

Hayek S.A., Gyawali R., Aljaloud S.O., Krastanov A., Ibrahim S.A. Cultivation media for lactic acid bacteria used in dairy products. Journal of Dairy Research, 2019, 86(4): 490-502. https://doi.org/10.1017/S002202991900075X

Hayek S.A., Shahbazi A., Awaisheh S.S., Shah N.P., Ibrahim S.A. Sweet potatoes as a basic component in developing a medium for the cultivation of lactobacilli. Bioscience, Biotechnology, and Biochemistry, 2013, 77(11): 2248-2254. https://doi.org/10.1271/bbb.130508

Hébert E.M., Raya R.R., Savoy de Giori G. Evaluation of minimal nutritional requirements of lactic acid bacteria used in functional foods. Environmental microbiology: Methods and protocols. 2004(1): 139-48. https://doi.org/10.1385/1-59259-765-3:139

Hemsworth J., Hekmat S., Reid G. The development of micronutrient supplemented probiotic yogurt for people living with HIV: Laboratory testing and sensory evaluation. Innovative Food Science and Emerging Technologies, 2011, 12(1): 79-84. https://doi.org/10.1016/j.ifset.2010.11.004

Hofer A., Herwig C. Quantitative determination of nine water‐soluble vitamins in the complex matrix of corn steep liquor for raw material quality assessment. Journal of Chemical Technology and Biotechnology, 2017, 92(8): 2106-2113. https://doi.org/10.1002/jctb.5211

Hui Y.H., Meunier-Goddik L., Josephsen J., Nip W.K., Stanfield P.S. Handbook of food and beverage fermentation technology (First Edition). CRC Press, 2004, eBook ISBN: 9780429223952

Ibrahim S.A., Ayad A.A., Williams L.L., Ayivi R.D., Gyawali R., Krastanov A., Aljaloud S.O. Date fruit: A review of the chemical and nutritional compounds, functional effects and food application in nutrition bars for athletes. International Journal of Food Science and Technology, 2021, 56(4): 1503-1513. https://doi.org/10.1111/ijfs.14783

Iranmanesh M., Ezzatpanah H., Mojgani N. Antibacterial activity and cholesterol assimilation of lactic acid bacteria isolated from traditional Iranian dairy products. LWT-Food Science and Technology, 2004, 58(2): 355-359. https://doi.org/10.1016/j.lwt.2013.10.005

Ivanova, M., Dessev, T., Dinkov, K., Dimitrova-Dicheva, M., Menkov, N., and Bogdanova, E. Comparative study between kashkaval from raw milk and chilled curd. Food Science and Applied Biotechnology, 2023, 6(1): 47-55. https://doi.org 10.30721/fsab2023.v6.i1.xx

Jelen, P. Whey processing. Utilization and Products. Academic Press: London, UK, 2003. https://doi.org/10.1016/B0-12-227235-8/00511-3

Karimi R., Mortazavian A.M., Amiri-Rigi A. Selective enumeration of probiotic microorganisms in cheese. Food Microbiology, 2012, 29(1): 1–9. https://doi.org/10.1016/j.fm.2011.08.008

Kok C.R., Hutkins R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutrition Reviews, 2018, 76(1): 4-15. https://doi.org/10.1093/nutrit/nuy056

Kongo J.M. Lactic acid bacteria as starter cultures for cheese processing: past, present and future developments. Lactic acid bacteria-R and D for food, health and livestock purposes, 2013, pp. 1-22. ISBN: 978-953-51-0955-6http://doi.org/10.5772/55937

Kristinsson H.G., Rasco B.A. Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in Food Science and Nutrition, 2000, 40(1): 43-81. https://doi.org/10.1080/10408690091189266

Leroy F. De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology, 2004, 15(2): 67-78. https://doi.org/10.1016/j.tifs.2003.09.004

Letort C., Juillard V. Development of a minimal chemically defined medium for the exponential growth of Streptococcus thermophilus. Journal of Applied Microbiology, 2001, 91(6): 1023-1029. https://doi.org/10.1046/j.1365-2672.2001.01469.x

Liu R., Shen F. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresource Technology, 2008, 99(4): 847-854. https://doi.org/10.1016/j.biortech.2007.01.009

Liu S.N., Han Y., Zhou Z.J. Lactic acid bacteria in traditional fermented Chinese foods. Food Research International, 2011, 44(3): 643-651. http://doi.org/10.1016/j.foodres.2010.12.034

Lomholt S.B., Qvist K.B. The formation of cheese curd. The technology of cheesemaking (Second Edition), 1999, pp. 66-98. http://doi.org/10.1002/9781444323740.ch4

Lourens-Hattingh A., Viljoen B.C. Yogurt as probiotic carrier food. International Dairy Journal, 2001, 11(1–2): 1–17. https://doi.org/10.1016/S0958-6946(01)00036-X

Lowrie R.J., Pearce L.E. Plating efficiency of bacteriophages of lactic streptococci. New Zealand Journal Dairy Science and Technology, 1971, pp. 166-171

Lu Z., Fleming H.P., McFeeterss R.F. Effects of fruit size on fresh cucumber composition and the chemical and physical consequences of fermentation. Journal of Food Science, 2002, 67(8): 2934– 2939 https://doi.org/10.1111/j.1365-2621.2002.tb08841.x

Marette A., Picard-Deland É., Fernandez M.A. Yogurt: roles in nutrition and impacts on health. CRC Press (First Edition), 2017, eBook ISBN: 9781315390321

Mathara J. M., Schillinger U., Kutima P. M., Mbugua S. K., Holzapfel W.H. Isolation, identification and characterization of the dominant microorganisms of kule naoto: the Maasai traditional fermented milk in Kenya. International Journal of Food Microbiology, 2004, 94(3): 269-278. https://doi.org/10.1016/j.ijfoodmicro.2004.01.008

McLaughlin H.L. Lesions of the musculotendinous cuff of the shoulder: III. Observations on the pathology, course and treatment of calcific deposits. Annals of Surgery, 1946, 124(2): 354-62, PMID:17858839

Mo H., Zhu Y., Chen Z. Microbially fermented tea–a potential source of natural food preservatives. Trends in Food Science and Technology, 2008, 19(3): 124-130. https://doi.org/10.1016/j.tifs.2007.10.001

Mokoena M.P., Chelule P.K., Gqaleni N. Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal. Journal of Food Protection, 2005, 68(10): 2095-2099. https://doi.org/10.4315/0362-028X-68.10.2095

Mollea C.; Marmo L.; Bosco F. Valorisation of cheese whey, a by-product from the dairy industry. In Food Industry, IntechOpen: London, UK, 2013. https://doi.org/10.5772/53159

Olasupo N.A., Olukoya D.K., Odunfa S.A. Identification of Lactobacillus species associated with selected African fermented foods. Zeitschrift Fur Naturforschung. Journal of Biosciences, 1997, 52(1–2): 105–108. https://doi.org/10.1515/znc-1997-1-218

Oyeniran A., Ibrahim S. A., Gyawali R., Tahergorabi R., Zimmerman T., Krastanov A. A modified reinforced clostridial medium for the isolation and enumeration of Lactobacillus delbrueckii ssp. bulgaricus in a mixed culture. Journal of Dairy Science, 2020, 103(6): 5030-5042. https://doi.org/10.3168/jds.2019-17894

Panesar P.S. Fermented Dairy Products: Starter Cultures and Potential Nutritional Benefits. Food and Nutrition Sciences, 2011, 2(1): 47–51. https://doi.org/10.4236/fns.2011.21006

Pires, A.F., Marnotes N.G., Rubio O.D., Garcia A.C., and Pereira C.D. Dairy by-products: A review on the valorization of whey and second cheese whey. Foods, 2021, 10(5): 1067. https://doi.org/10.3390/foods10051067

Polak-Berecka M., Waśko A., Kordowska-Wiater M., Targoński Z., Kubik-Komar A. Application of response surface methodology to the enhancement of biomass production by Lactobacillus rhamnosus E/N. Brazilian Journal of Microbiology, 2011, 42(4): 1485-1494. https://doi.org/10.1590/S1517-83822011000400035

Rai A.K., Sanjukta S., Jeyaram K. Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Critical Reviews in Food Science and Nutrition, 2017, 57(13): 2789-2800. https://doi.org/10.1080/10408398.2015.1068736

Rebah F.B., Miled N. Fish processing wastes for microbial enzyme production: a review. Biotech 3, 2013, 3(4): 255–265. https://doi.org/10.1007/s13205-012-0099-8

Rul F. Yogurt: Microbiology, organoleptic properties and probiotic potential. Part II: Technological Interventions, CRC Press, 2017, pp. 525, ISBN: 9781138637849

Safari R., Motamedzadegan A., Ovissipour M., Regenstein J. M., Gildberg A., Rasco B. Use of hydrolysates from yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology, 2012, 5(1):73–79. https://doi.org/10.1007/s11947-009-0225-8

Sawatari Y., Hirano T., Yokota A. Development of food-grade media for the preparation of Lactobacillus plantarum starter culture. The Journal of General and Applied Microbiology, 2006, 52(6): 349-356. https://doi.org/10.2323/jgam.52.349

Sekar R., Selvasekaran P., Kar A., Varalwar T., Godli C., Chidambaram R. Lactose-free food products for lactose intolerant children. Food Science, Technology and Nutrition for babies and children. 2020, pp. 143-68. https://doi.org/10.1007/978-3-030-35997-3_7

Smithers G.W. Whey-ing up the options - Yesterday, today and tomorrow. International Dairy Journal, 2015, 48(9): 2–14. https://doi.org/10.1016/j.idairyj.2015.01.011

Stankov S., Fidan H., Dincheva I., Balabanov A., and Petrova I. Changes in physicochemical, microbiological and fatty acid composition during the ripening period of artisan sheep cheese from Bulgaria. Food Science and Applied Biotechnology, 2023, 6(1): 38-46. https://doi.org/10.30721/fsab2023.v6.i1.218

Steinkraus K.H. Lactic acid fermentation. Applications of biotechnology to traditional fermented foods. National Academies Press (US), 1992. https://doi.org/10.17226/1939

Studenica A., Märtlbauer E., and Mulliqi-Osmani, G. The prevalence of bacterial contaminants in artisanal cheese sold in informal markets. the case of Kosovo. Food Science and Applied Biotechnology,2022, 5(1), 77-86. https://doi.org/10.30721/fsab2022.v5.i1.168

Tamime A. Y., Robinson R. K. Tamime and Robinson's yogurt: Science and Technology. Elsevier, 2017, eBook ISBN: 9781845692612

Tharmaraj N., Shah N. Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and propionibacteria. Journal of Dairy Science, 2003, 86(7): 2288–2296. https://doi.org/10.3168/jds.S0022-0302(03)73821-1

Ucar R. A., Pérez‐Díaz I. M., Dean L. L. Gentiobiose and cellobiose content in fresh and fermenting cucumbers and utilization of such disaccharides by lactic acid bacteria in fermented cucumber juice medium. Food Science and Nutrition, 2020, 8(11): 5798-5810. https://doi.org/10.1002/fsn3.1830

UmaMaheswari T., Anbukkarasi K., Hemalatha T., and Singh, R. GTG5 fingerprinting of native Streptococcus thermophilus strains and its authentication by principal component analysis–A road to value added commercial yoghurt starter cultures. International Dairy Journal, 2020, 122(10): 105161. https://doi.org/10.1016/j.idairyj.2021.105161

Ummadi M.S., Curic-Bawden M. Use of protein hydrolysates in industrial starter culture fermentations, in Protein Hydrolysates in Biotechnology (First Edition), Springer, Dordrecht, 2008, pp. 91-114. https://doi.org/10.1007/978-1-4020-6674-0_6

Vázquez J.A., González M., Murado M.A. Peptones from auto hydrolysed fish viscera for nisin and pediocin production. Journal of Biotechnology, 2004, 112(3): 299-311. https://doi.org/10.1016/j.jbiotec.2004.04.011

Wegkamp A., Teusink B., De Vos W.M., Smid E.J. Development of a minimal growth medium for Lactobacillus plantarum. Letters in Applied microbiology, 2010, 50(1): 57-64. https://doi.org/10.1111/j.1472-765X.2009.02752.x

Weiss N., Schillinger U., Kandler O. Lactobacillus lactis, Lactobacillus leichmannii and Lactobacillus bulgaricus, subjective synonyms of Lactobacillus delbrueckii, and description of Lactobacillus delbrueckii subsp. lactis comb. nov. and Lactobacillus delbrueckii subsp. bulgaricus comb. nov. Systematic and Applied microbiology, 1983, 4(4): 552-557. https://doi.org/10.1016/S0723-2020(83)80012-5

Widyastuti Y.R., Febrisiantosa A. The Role of Lactic Acid Bacteria in Milk Fermentation. Food and Nutrition Sciences, 2004, 5(4): 435–442. https://doi.org/10.4236/fns.2014.54051

Yeboah P. J., Wijemanna N. D., Eddin A. S., Williams L. L., Ibrahim S. A. Lactic Acid Bacteria: Review on the Potential Delivery System as an Effective Probiotic. In Dairy Processing - From Basics to Advances, 2023, IntechOpen, London, United Kingdom. https://doi.org/10.5772/intechopen.111776

Yu L., Lei T., Ren X., Pei X., Feng Y. Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochemical Engineering Journal, 2008, 39(3): 496-502. https://doi.org/10.1016/j.bej.2007.11.008

How to Cite
YEBOAH, Philip Junior; IBRAHIM, Salam A; KRASTONOV, Albert. A review of fermentation and the nutritional requirements for effective growth media for lactic acid bacteria. Food Science and Applied Biotechnology, [S.l.], v. 6, n. 2, p. 215-240, oct. 2023. ISSN 2603-3380. Available at: <https://www.ijfsab.com/index.php/fsab/article/view/269>. Date accessed: 21 may 2024. doi: https://doi.org/10.30721/fsab2023.v6.i2.269.