Main Article Content

Stepan Garo Akterian Eliza Akterian

Abstract

This review aims to reveal a modality for transforming liquid vegetable oils into semi-solid forms as their mechanical properties can vary from viscous and thick liquids to hard and elastic solids. The edible oleogels are an alternative replacer of undesirable trans and saturated fats. They are porous materials with self-assembled and three-dimensional gel network. Large amount of a continuous edible liquid-oil phase can be entrapped physically and stored in this gel structure. The bigels are a variety of oleogels and they represent two-phase emulsions, containing both oil-based oleogels and water-based hydrogels. The edible oleogels are composed by a structurant substance of food grade in a low concentration, below 10 %. Some of their featured properties are: (i) improved viscosity, spreadability and some of them are semisolid, translucent with semi-crystalline structure; (ii) high physical and structural stability combined with high oil binding capacity; (iii) high-temperature stability, but some of them are thermo-reversible; (iv) higher oxidative stability of oil and the chemical stability of active lipophilic compounds incorporated; (v) microbiological stability. Their more remarkable food applications are chocolates, processed meat products, margarine spreads and shortening. Their combination with other promising techniques raises up new perspectives for structural engineering of foods. There are also outlined other applications of oleogels in cosmetic and pharmaceutical formulations; for engineering purposes and environmental protection. The general limitations, some challenges in the development of new products, their commercialization are also divulged.

Article Details

References

Abdallah D.J., Weiss R.G. Organogels and low molecular mass organic gelators. Advvanced Materials, 2000, 12(17): 1237-1247. https://doi.org/10.1002/1521-4095(200009)12:17<1237::AID-ADMA1237>3.0.CO;2-B

Almeida I.F., Fernandes A.R., Fernandes L., Pena Fer-reira P.C., Costa P.C., Bahia M.F. Moisturizing effect of oleogel/hydrogel mixtures. Pharmaceutical De-velopment and Technology, 2008, 13(6): 487-494. https://doi.org/10.1080/10837450802282447

Astrup A., Bertram H.C.S., Bonjour J.-P., de Groot L.C.P., Otto M.C.O., Feeney E.L., Garg M.L., Givens I., Kok F.J., Krauss R.M., Jordan D., Lamarche B., Lecerf J.-M., Legrand P., McKinley M., Micha R., Michalski M.-C., Mozaffarian D., Soedamah-Muthu S.S. WHO draft guidelines on dietary saturated and trans fatty acids: time for a new approach? BMJ, 2019, 366(7): l4137. https://doi.org/10.1136/bmj.l4137

Balasubramanian R., Damodar, G., Sughir, A. Oleogel: A promising base for transdermal formulations. Asian Journal of Pharmaceutics, 2012, 6(1): 1-9. https://doi.org/10.4103/0973-8398.100118

Barbut S., Wood J., Marangoni A. Quality effects of using organogels in breakfast sausage, Meat Sci-ence, 2016, 122(12): 84-89. https://doi.org/10.1016/j.meatsci.2016.07.022

Bemmelen J.M. Der Hydrogel und das kristallinische Hydrat des Kupferoxydes. Néerl. 1896, 30: 1-24 – Published: January 1907 in: Zeitschrift für Chemie und Industrie der Kolloide. 1907, 1(7): 213-214. https://doi.org/10.1007/BF01830147

Bhattacharya S. Krishnan-Ghosh Y. First report of phase selective gelation of oil from oil/water mix-tures. Possible implications toward containing oil spills. Chemical Communications, 2001, 37(2): 185-186.https://doi.org/10.1039/B007848O

Blake A.I., Toro-Vazquez J.F., Hwang H.-S. Wax Oleo-gels. In: Edible Oleogels (A.G. Marangoni, N. Garti Eds.). Champaign, AOCS Press. 2018, pp. 133-171, ISBN: 978-0-12-814270-7, https://doi.org/10.1016/C2017-0-00541-4

Bot A., Floter E. Edible Oil Oleogels Based on Self-assembled β-Sitosterol and γ-Oryzanol Tubules. In: Edible Oleogels (A.G. Marangoni, N. Garti Eds.). Champaign, AOCS Press. 2018, pp. 31-63, ISBN: 978-0-12-814270-7, https://doi.org/10.1016/C2017-0-00541-4

Chavan R.S., Khedkar C.D., Bhatt S. Fat Replacer. In: The Encyclopedia of Food and Health (B. Caballe-ro, P. Finglas, F. Toldrá Eds.). Academic Press. 2016, vol. 2, pp. 589-595. ISBN: 978-0-12-384953-3

Chen C.-H., Terentjev E.M. Monoglycerides in Oils. In: Edible Oleogels (A.G. Marangoni, N. Garti Eds.). Champaign, AOCS Press. 2018, pp. 103-131, ISBN: 978-0-12-814270-7, https://doi.org/10.1016/C2017-0-00541-4

Co E.D., Marangoni A.G. Organogels: an alternative edible oil-structuring method. JAOCS, 2012, 89(5): 749-780. https://doi.org/10.1007/s11746-012-2049-3

Cotabarrena I.M., Crucesa S., Palla C.A. Extrusion 3D printing of nutraceutical oral dosage forms formu-lated with monoglycerides oleogels and phytosterols mixtures. Food Research International, 2019, 126(12): 108676. https://doi.org/10.1016/j.foodres.2019.108676

David А., David М., Lesniarek P., Corfias E., Pululu Y., Delample M., Snabre P. Oleogelation of rapeseed oil with cellulose fibers as an innovative strategy for palm oil substitution in chocolate spreads. Journal of Food Engineering, 2021, 292(3): 110315. https://doi.org/10.1016/j.jfoodeng.2020.110315

Davidovich-Pinhas M., Barbut S., Marangoni A.G. De-velopment, Characterization, and Utilization of Food-Grade Polymer Oleogels. Annual Review of Food Science and Technology, 2016, 7(4): 65-97. https://doi.org/10.1146/annurev-food-041715-033225

Esposito C.L, Kirilov P. Preparation, Characterization and Evaluation of Organogel-Based Lipstick Formu-lations: Application in Cosmetics. Gels, 2021, 7(3): 97. https://doi.org/10.3390/gels7030097

European Commission Regulation (EU) 649 of 24 April 2019 as regards trans-fat, other than trans-fat natu-rally occurring in fat of animal origin. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R0649

Flöter E., Wettlaufer T., Conty V., Scharfe M. Oleogels - their applicability and methods of characterization. Molecules, 2021,; 26(6): 1673. https://doi.org/10.3390/molecules26061673

Gravelle A.J., Davidovich-Pinhas M., Barbut S., Maran-goni A.G. Influencing the crystallization behavior of binary mixtures of stearyl alcohol and stearic acid (SO-SA) using ethylcellulose. Food Research Inter-national, 2017, 91(1): 1-10. https://doi.org/10.1016/j.foodres.2016.11.024

Gravelle A.G., Marangoni A.G., Davidovich-Pinhas M. Ethylcellulose Oleogels. In: Edible Oleogels (A.G. Marangoni, N. Garti Eds.). Champaign, AOCS Press. 2018, pp. 331-362, ISBN: 978-0-12-814270-7, https://doi.org/10.1016/C2017-0-00541-4

Hasda A., Vuppaladadium S., Qureshi D., Prasad G., Mohanty B., Banerjee I., Shaikh H., Anis A., Sarkar P., Pal K. Graphene oxide reinforced nanocomposite oleogels improves corneal permeation of drugs. Journal of Drug Delivery Science and Technology, 2020, 60(12): 102024. https://doi.org/10.1016/j.jddst.2020.102024

Heldermann М. Get the Perfect Lipstick: Boost Oil-binding Capacity with Natural Waxes. Cosmetics and Toiletrie, 2016, 131(7): 23. https://www.cosmeticsandtoiletries.com/formulating/category/color/Get-the-Perfect-Lipstick-Boost-Oil-binding-Capacity-With-Natural-Waxes-394615431.html

Hwang H.S., Singh M., Lee S. Properties of cookies made with natural wax-vegetable oil organogels, Journal of Food Science, 2016, 81(5): 1045–1054. https://doi.org/10.1111/1750-3841.13279

Kumar R., Katare O.P. Lecithin organogels as a poten-tial phospholipidstructured system for topical drug delivery: A review. AAPS Pharmscitech, 2005, 6: E298-E310. https://doi.org/10.1208/pt060240

Lopez-Martínez A., Charo-Alonso M.A., Marangoni A.G., Toro-Vazquez J.F. Monoglyceride organogels developed in vegetable oil with and without ethyl-cellulose. Food Research Internatinal, 2015, 72(6): 37-46. https://doi.org/10.1016/j.foodres.2015.03.019

Lupi F.R., Gabriele D., Baldino N., Mijovic P., Parisic O.I., Puoc F. Olive oil/policosanol organogels for nutraceutical and drug delivery purposes. Food & Function, 2013, 4(10): 1512-1520. https://doi.org/10.1039/c3fo60259a

Lupi F.R., Shakeel A., Greco V., Oliviero R.C., Baldino N., Gabriele D. A rheological and microstructural characterisation of bigels for cosmetic and pharma-ceutical uses. Materials Science and Engineering: C, 2016, 69(12): 358-365. https://doi.org/10.1016/j.msec.2016.06.098

Macoon R., Chauhan A. Ophthalmic delivery of hydro-philic drugs through drug-loaded oleogels. European Journal of Pharmaceutical Sciences, 2021, 158(3): 105634. https://doi.org/10.1016/j.ejps.2020.105634

Marangoni A.G., Garti N. Edible Oleogels. Structure and Health Implications. (First Edition). AOCS, Urbana, 2011, pp. ISBN: 978-0-9830791-1-8. https://doi.org/10.1016/C2015-0-02413-3

Martinez R.M., Rosado C., Velasco M.V.R., Lannes S.C.S., Baby A.R. Main features and applications of organogels in cosmetics. International Journal of Cosmetic Science, 2019, 41(2): 109-117. https://doi.org/10.1111/ics.12519

Martins A.J., Vicente A.A., Cunhab R.L., Cerqueira М.А. Edible oleogels: an opportunity for fat re-placement in foods. Food & Function, 2018, 9(2): 758-773. https://doi.org/10.1039/c7fo01641g

Masotta N.E., Martinefski M.R., Lucangioli S., Rojas A.M., Tripodi V.P. High-dose coenzyme Q10-loaded oleogels for oral therapeutic supplementation. Inter-national Journal of Pharmaceutics, 2019, 556(2): 9-20. https://doi.org/10.1016/j.ijpharm.2018.12.003

Moriano M. E. and Alamprese C. Organogels as novel ingredients for low saturated fat ice creams, LWT – Food Science and Technology, 2017, 86(7): 371-376. https://doi.org/10.1016/j.lwt.2017.07.034

Mozaffarian D, Aro A., Willett WC. Health effects of trans-fatty acids: experimental and observational evidence. European Journal of Clinical Nutrition, 2009, 63(2): S5-S21. https://doi.org/10.1038/sj.ejcn.1602973

Mozaffarian D., Katan, M.B., Ascherio, A., Stampfer, M.J., Willett, W.C. Trans-fatty acids and cardiovas-cular disease. The New England Journal of Medi-cine, 2006, 354(4): 1601-1613. https://doi.org/10.1056/NEJMra054035

Nettleton J.A., Brouwer I.A., Geleijnse J.M., Hornstra G. Saturated fat consumption and risk of coronary heart disease and ischemic stroke: a science updat-ed. Annals of Nutrition and Metabolism, 2017, 70(1): 26-33. https://doi.org/10.1159/000455681

Niia S., Okumuraa S., Kinoshitab T., Ishigakib Y., Nakanob K., Yamaguchib K., Akitab S. Extractant-impregnated organogel for capturing heavy metals from aqueous solutions. Separation and Purifica-tion Technology, 2010, 73(2): 250-255. https://doi.org/10.1016/j.seppur.2010.04.009

Nishida C., Uauy R. WHO Scientific update on health consequences of trans fatty acids: Introduction. Eu-ropean Journal of Clinical Nutrition, 2009, 63(2): S1-4. https://doi.org/10.1038/ejcn.2009.13

Pages Pal K., Banerjee I. Polymeric Gels. Characteriza-tion, Properties and Biomedical Applications (First Edition). Woodhead Publishing. 2018, pp. 231-249, ISBN: 978-0-08-102179-8, https://doi.org/10.1016/C2016-0-04092-5

Panagiotopoulou E., Moschakis T., Katsanidis E. Sun-flower oil organogels and organogel-in-water emul-sions (part II): Implementation in frankfurter sau-sages, LWT – Food Science and Technology, 2016, 73(11): 351-356. https://doi.org/10.1016/j.lwt.2016.03.004

Park C., Maleky F. A critical review of the last 10 years of oleogels in food. Mini review. Frontiers in Sus-tainable Food Systems, 2020, 4(9): 00139. https://doi.org/10.3389/fsufs.2020.00139

Patel A.R., Rajarethinem P.S., Gredowska A., Turhan O., Lesaffer A., De Vos W.H., Van de Walle D., Dewettinck K. Edible applications of shellac oleo-gels: spreads, chocolate paste and cakes, Food & Function, 2014, 5(4): 645-652. https://doi.org/10.1039/C4FO00034J

Prausnitz M.R., Mitragotri S., Langer R. Current status and future potential of transdermal drug delivery. Nature Reviews Drug Discovery, 2004, 3(2): 115-124. https://doi.org/10.1038/nrd1304

Qi W., Li T., Zhang Z., Wu T. Preparation and character-ization of oleogel-in-water swelling pickering emul-sions stabilized by cellulose nanocrystals. Food Hy-drocolloids, 2021, 110(1): 106206. https://doi.org/10.1016/j.foodhyd.2020.106206

Roller S., Jones S.A. Handbook of Fat Replacers (First Edition). CRC Press. 1996. 336 pages. Print ISBN: 9780849325120

Samateh M., Sagiri S., John G. Molecular Oleogels: Green Approach in Structuring Vegetable Oils. In: Edible Oleogels (A.G. Marangoni, N. Garti Eds). First Edition. AOCS. 2011, pp. 415-438, Print ISBN: 978-1-4665-8668-0, eBook ISBN: 978-0-3678-0206-6, https://doi.org/10.1016/B978-0-12-814270-7.00018-6

Samateh M., Sagiri S., Sanni R., Chee C., Satapathy S., John G. Tuning aesthetic and mechanical properties of oleogels via formulation of enzyme-enabled ste-reoisomeric molecular gelators. Journal of Agricul-tural and Food Chemistry, 2020, 68(46): 13282-13290. https://doi.org/10.1021/acs.jafc.0c00185

Sanchez R., Franco J.M., Delgado M.A., Valencia C., Gallegos C. Rheological and mechanical properties of oleogels based on castor oil and cellulosic deriva-tives potentially applicable as bio-lubricating greas-es: Influence of cellulosic derivatives concentration ratio. Journal of Industrial and Engineering Chem-istry, 2011a, 17(4): 705-711. https://doi.org/10.1016/j.jiec.2011.05.019

Sanchez R., Franco J.M., Delgado M.A., Valencia C., Gallegos C. Rheology of oleogels based on sorbitan and glyceryl monostearates and vegetable oils for lubricating applications. Grasas y Aceites, 2011b, 62(3): 328-336. https://doi.org/10.3989/gya.113410

Sanchez R., Stringari G.B., Franco J.M., Valencia C., Gallegos C. Thermal and mechanical characteriza-tion of cellulosic derivatives-based oleogels poten-tially applicable as bio-lubricating greases: Influence of ethyl cellulose molecular weight. Carbohydrate Polymers, 2011c; 83(1): 151-158. https://doi.org/10.1016/j.carbpol.2010.07.033

Sanchez R., Stringari G.B., Franco J.M., Valencia C., Gallegos C. Use of chitin, chitosan and acylated de-rivatives as thickener agents of vegetable oils for bio-lubricant applications. Carbohydrate Polymers, 2011d; 85(3): 705-714. https://doi.org/10.1016/j.carbpol.2011.03.049

Scharfe M., Flöter E. Oleogelation: from scientific feasi-bility to applicability in food products. European Journal of Lipid Science and Technology, 2020, 122(12): 2000213. https://doi.org/10.1002/ejlt.202000213

Shaikh I.M., Jadhav S.L., Jadhav K.R., Kadam V.J., Pisal S.S. Aceclofenac organogels: In vitro and in vi-vo characterization. Current Drug Delivery, 2009, 6(1): 1-7. https://doi.org/10.2174/156720109787048320

Shakeel A., Farooq U., Iqbal T., Yasina S., Lupi F.R., Gabriele D. Key characteristics and modelling of bi-gels systems: A review. Materials Science & Engi-neering C, 2019, 97(4): 932-953. https://doi.org/10.1016/j.msec.2018.12.075

Silva‑Avellaneda E., Bauer‑Estrada K.R.E., Quintanil-la‑Carvajal X. The effect of composition, microflu-idization and process parameters on formation of oleogels for ice cream applications. Scientific Re-ports, 2021, 11(3): 7161. https://doi.org/10.1038/s41598-021-86233-y

Singh V.K., Qureshi D., Nayak S.K., Pal K. Bigels. In: Polymeric Gels (K. Pal, I. Banerjee Eds). Elsevier. 2018, pp. 265-282, ISBN: 978-0-08-102179-8, https://doi.org/10.1016/b978-0-08-102179-8.00010-7

Siraj N., Shabbir M.A., Ahmad T., Sajjad A., Khan M.I., Butt M.S. Organogelators as a saturated fat replacer for structuring edible oils, International Journal of Food Properties, 2015, 18(9): 1973-1989. https://doi.org/10.1080/10942912.2014.951891

Stortz T.A., Marangoni A.G. Heat resistant chocolate. Trends in Food Science & Technology, 2011, 22(5): 201-214. https://doi.org/10.1016/j.tifs.2011.02.001

Stortz T.A., Zetzl A.K., Barbut S., Cattaruzza A., Ma-rangoni A.G. Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technology, 2012, 24(7): 151-154. https://doi.org/10.1002/lite.201200205

Temkov M., Mureşan V. Tailoring the structure of lipids, oleogels and fat replacers by different approaches for solving the trans-fat issue - a review. Foods, 2021, 10(6); 1376. https://doi.org/10.3390/foods10061376

WHO. Draft Guidelines: Saturated fatty acid and trans-fatty acid intake for adults and children. 2018а. Ge-neva: WHO. Available at: https://extranet.who.int/dataform/upload/surveys/666752/files/Draft%20WHO%20SFA-TFA%20guidelines_04052018%20Public%20Consultation(1).pdf (accessed on 2 Aug 2021)

WHO. REPLACE trans-fat: an action package to elimi-nate industrially produced trans-fatty acids. WHO/NMH/NHD/18.4., 2018b. Available at: https://apps.who.int/iris/bitstream/handle/10665/331301/WHO-NMH-NHD-18.4-eng.pdf?squence=1&isAllowed=y

WHO. Global Strategy on Diet, Physical Activity and Health. Geneva, WHO, 2004. Available at: https://www.who.int/publictions/i/item/9241592222

Xue Z., Yu Y., Yu W., Gao X., Zhang Y., Kou X. Devel-opment prospect and preparation technology of ed-ible oil from microalgae. Frontiers in Marine Sci-ence, 2020, 7(6): 00402. https://doi.org/10.3389/fmars.2020.00402

Zulim Botega D.C., Marangoni A.G., Smith A.K., Goff H.D. The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream, Journal of Food Science, 2013, 78(9): 1334-1339. https://doi.org/10.1111/1750-3841.12175

How to Cite
AKTERIAN, Stepan Garo; AKTERIAN, Eliza. Оleogels – types, properties and their food, and other applications. Food Science and Applied Biotechnology, [S.l.], v. 5, n. 1, p. 1-11, mar. 2022. ISSN 2603-3380. Available at: <https://www.ijfsab.com/index.php/fsab/article/view/156>. Date accessed: 23 may 2022. doi: https://doi.org/10.30721/fsab2022.v5.i1.156.