Main Article Content

Fungki Sri Rejeki, Dr. Diana Puspitasari Endang Retno Wedowati

Abstract

Kimpul (Xanthosoma sagitifolium) is one type of local tuber plant that has high carbohydrate content (34.2g/100g). This plant provides an opportunity to be utilized as an alternative source of sugar. The use of kimpul as liquid sugar becomes an alternative sweetener that needs testing from the perspective of nutrition and health. The Glycemic Index (GI) is a term that is closely related to carbohydrate metabolism, which has the index (level) of food according to its effect on blood glucose levels. The study of the formulating process of kimpul liquid sugar that has a lower GI attempts the use of sugar from kimpul can be more appropriate and well-targeted. This study aimed to determine the engineering process to decrease the GI value of liquid sugar from kimpul through the treatment of tea extract addition and identify the nutritional value, calorific value, GI value, and tannin content in the kimpul liquid sugar as the result of the engineering process. The results showed that the addition of black tea extract with a 2% concentration could reduce the GI value of the kimpul liquid sugar. Thus, kimpul liquid sugar can use as a source of natural sugar with a low GI.

Article Details

References

Amorim, L. M. N. de, Vas, S. R., Cesário, G., Coelho, A. S. G., Botelho, P. B. Effect of green tea extract on bone mass and body composition in individuals with diabetes. Journal of Functional Foods, 2018, 40: 589–594.

Anderson, R. A., Polansky, M. M. Tea enhances insulin activity. Journal of Agricultural and Food Chemistry, 2002,50(24): 7182–7186.

AOAC, I. Official Methods of Analysis (Volume 1). (K. Helrich, Ed.) (15th ed., Vol. 1). Arlington, Virginia, USA: Association of Official Analytical Chemists, Inc. 1990, 771 pages. ISBN: 0-935584-42-0, ISSN: 0066-961X.

Baibado, J. T., Yang, M., Peng, X., Cheung, H. Y. Biological activities and functions of Camellia sinensis (Tea). Herbal Medicines & Nutraceuticals, 2011, 18(1): 31–39.

Bradley Jr., R. L. Moisture and total solids analysis. In S. S. Nielsen (Ed.), Food Analysis (Fourth Edi.). New York USA: Springer. 2010, pp. 85–104. DOI: 10.1007/978-1-4419-1478-1_6.

Brouns, F., Bjorck, I., Frayn, K. N., Gibbs, A. L., Lang, V., Slama, G., Wolever, T. M. S. Glycaemic index methodology. Nutrition Research Reviews, 2005, 18: 145–171.

Chen, Z. Y., Zhu, Q. Y., Tsang, D., Huang, Y. Degradation of green tea catechins in tea drinks. Journal of Agricultural and Food Chemistry, 2001, 49(1): 477–482.

Dabas, D. Polyphenols as colorants. Advances in Food Technology and Nutritional Sciences - Open Journal, 2016, SE(2), S1–S6.

Das, S., Bhattacharya, A., Haldar, S., Ganguly, A., Gu, S., Ting, Y. P., Chatterjee, P. K. Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: Comparison between artificial neural network and response surface methodology. Sustainable Materials and Technologies, 2015, 3: 17–28.

Dorkbuakaew, N., Ruengnet, P., Pradmeeteekul, P., Nimkamnerd, J., Nantitanon, W., Thitipramote, N. Bioactive compounds and antioxidant activities of Camellia sinensis var. assamica in different leave maturity from Northern Thailand. International Food Research Journal, 2016, 23(5): 2291–2295.

Graham, H. N. Green tea composition, consumption, and polyphenol chemistry. Preventive Medicine, 1992, 21(3): 334–350.

Hara, Y., Honda, M. The Inhibition of α -Amylase by Tea Polyphenols. Agricultural and Biological Chemistry, 1990, 54(8): 1939–1945.

Jenkins, D. J. A., Wolever, T. M. S., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., … Goff, D. V. Glycemic index of foods: A physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 1981, 34: 362–366.

Khasnabis, J., Rai, C., Roy, A. Determination of tannin content by titrimetric method from different types of tea. Journal of Chemical and Pharmaceutical Research, 2015, 7(6): 238–241.

Lin, Y. S., Tsai, Y. J., Tsay, J. S., Lin, J. K. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. Journal of Agricultural and Food Chemistry, 2003, 51(7): 1864–1873.

Majumdar, S., Moudgal, R. P. Effect of tannic acid on activities of certain digestive enzymes and alkaline phosphatase in intestine and glucose absorption in adult chickens. Journal of Applied Animal Research, 1994, 6: 105–112.

Matsubara, K., Saito, A., Tanaka, A., Nakajima, N., Akagi, R., Mori, M., Mizushina, Y. Catechin conjugated with fatty acid pnhibits DNA Polymerase and angiogenesis. DNA and Cell Biology, 2006, 25(2): 95–103.

Ndabikunze, B. K., Talwana, H. A. L., Mongi, R. J., Issa-zacharia, A., Serem, A. K., Palapala, V., Nandi, J. O. M. Proximate and mineral composition of cocoyam (Colocasia esculenta L. and Xanthosoma sagittifolium L.) grown along the Lake Victoria Basin in Tanzania and Uganda. African Journal of Food Science, 2011, 5(4): 248–254.

Ojewumi, M. E., Adeeyo, O. A., Akingbade, O. M., Babatunde, E., Ayoola, A. A., Awolu, O. O., … Omodara, O. J. Evaluation of glucose syrup produced from cassava hydrolyzed with malted grains (rice, sorghum & maize). International Journal of Pharmaceutical Sciences and Research, 2018, 9(8): 3378–3387.

Palupi, N. S., Zakaria, F. R., Prangdimurti, E. Effect of processing on food nutruition value. In Modul e-Learning ENBP. Bogor: Departemen Ilmu & Teknologi Pangan, Fateta, IPB. 2007, pp. 1-14. [In Indonesian]

Parker, K., Salas, M., Nwosu, V. C. High fructose corn syrup: Production, uses and public health concerns. Biotechnology and Molecular Biology Review, 2010, 5(5): 71–78.

Permanasari, A. R., Yulistiani, F., Purnama, R. W., Widjaja, T., Gunawan, S. The effect of substrate and enzyme concentration on the glucose syrup production from red sorghum starch by enzymatic hydrolysis. In IOP Conference Series: Earth and Environmental Science 160 012002, 2018, p. 1–6.

Puspitasari, D., Rahayuningsih, T., & Rejeki, F. S. Characterization and formulation of kimpul-cowpea composite flour for non-wheat biscuit development. Research Report. Universitas Wijaya Kusuma Surabaya. Surabaya. 2013. [In Indonesian]

Rejeki, F. S., Puspitasari, D., Wedowati, E. R. The competitive advantage of kimpul liquid sugar. Journal of Research and Technology, 2017, 3(1): 46–53. [In Indonesian]

Rippe, J. M., Angelopoulos, T. J. Sucrose, high-fructose corn syrup, and fructose, their metabolism and potential health effects: What do we really know? In ASN 2012 Annual Meeting Symposium, 2013, p. 236–245.

Saaty, T. L., Vargas, L. G. Decision Making with the Analytic Network Process. (F. S. Hillier & C. C. Price, Eds.) (Second Edi). New York: Springer. 2013, 370 pages. ISSN: 0884-8289, Print ISBN: 978-1-4614-7278-0, eBook ISBN: 978-1-4614-7279-7, DOI: 10.1007/978-1-4614-7279-7.

Sampath, C., Rashid, M. R., Sang, S., Ahmedna, M. Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomedicine and Pharmacotherapy, 2017, 87: 73–81.

Selvendran, R. R., Reynolds, J., Galliard, T. Production of volatiles by degradation of lipids during manufacture of black tea. Phytochemistry, 1978, 17(2): 233–236.

Sharangi, A. B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – A review. Food Research International, 2009, 42(5–6): 529–535.

Snoussi, C., Ducroc, R., Hamdaoui, M. H., Dhaouadi, K., Abaidi, H., Cluzeaud, F., … Bado, A. Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet. Journal of Nutritional Biochemistry, 2014, 25(5): 557–564.

Yadav, P., Majumder, C. B. Production of glucose syrup by the hydrolysis of starch made from rotten potato. Journal of Integrated Science & Technology, 2017, 5(1): 19–22.

How to Cite
REJEKI, Fungki Sri; PUSPITASARI, Diana; WEDOWATI, Endang Retno. Kimpul (Xanthosoma sagitifolium) liquid sugar with low glycemic index. Food Science and Applied Biotechnology, [S.l.], v. 3, n. 2, p. 185-195, oct. 2020. ISSN 2603-3380. Available at: <https://www.ijfsab.com/index.php/fsab/article/view/84>. Date accessed: 26 oct. 2020. doi: https://doi.org/10.30721/fsab2020.v3.i2.84.