Main Article Content

Mulugeta Fentahun Berhanu Andualem

Abstract

Yeasts that can withstand stress can generate ethanol in challenging environmental circumstances. The objective of this finding was to screen, identify, and characterize wild native yeast isolates that can withstand stress from traditional fermented beverages in the Amhara Region. Twenty-eight yeast like isolates were selected from the total 91 yeast like colonies based on morphological and biochemical assays. According to the sequence of internal transcribed spacer ITS-5.8S rRNA region, all the indigenous yeast isolates were affiliated to Saccharomyces cerevisiae. Tolerance to 28% ethanol was discovered four isolates (A12, A21, TJ1, and TJ6). Six isolates (A1, A15, A21, TJ3, TJ6, and T5) were found to be thermotolerant at 50, and sixteen isolates grew at a low pH (³ 2.5). At 85% high sugar concentration, the isolates TJ1, TJ6, and T14 were identified as having osmotolerance. The majority of the isolates were ethanol-tolerant, thermotolerant, acid-tolerant, and osmotolerant. They were capable of fermenting glucose, maltose, sucrose, fructose, and galactose. Indigenous yeast isolates that are high-stress-tolerant and potentially beneficial were isolated in this study. This investigation demonstrated that local fermentation methods and their byproducts can serve as potential sources of yeast isolates for industrial applications.

Article Details

References

Abdel-Banat B.M.A., Hoshida H., Ano A., Nonklang S., Akada R. High-temperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appllied Microbiolology and Biotechnology, 2010, 85(4): 861-867. https://doi.org/10.1007/s00253-009-2248-5

Aguilera J., Randez-Gil F., Prieto J.A. Cold response in Saccharomyces cerevisiae: New functions for old mechanisms. FEMS Microbiology Reviews, 2007, 31(3): 327-341. https://doi.org/10.1111/j.1574-6976.2007.00066.x

Aila R., Alim A., Mahemuti A., kelimu A. Separation, purification and identification of excellent yeasts from the natural fermented beverage of boza. Journal of Food and Nutrition Research, 2020, 8(9): 450-458. https://doi.org/10.12691/JFNR-8-9-1

Andualem B., Shiferaw M., Berhane N. Isolation and characterization of Saccaromyces cerevisiae yeasts isolates from “tella” for beer production. Annual Research and Review in Biolog, 2017, 15(5): 1-12. https://doi.org/10.9734/ARRB/2017/34129

Ansanay-Galeote V., Blondin B., Deguin S., Sablayrolles J.M. Stress effects of ethanol on fermentation kinetics by stationary phase cells of Saccharomyces cerevisiae. Biotechnology Letters, 2001, 23(9): 677-681. https://doi.org//10.1023/A:1010396232420

Arroyo López F.N., Orlić S., Querol A., Barrio E. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecfic hybrid. International Journal of Food Microbiology, 2009,131(2-3): 120. https://doi.org/10.1016/J.IJFOODMICRO.2009.01.035

Ashenafi M. Review Article: A review on the microbiology of indigenous fermented foods and beverages of Ethiopia. Ethiopian Journal of Biolological Science, 2008, 5(2): 189-245. https://doi.org/10.4314/EJBS.V5I2.39036

Attfield P.V., Raman A., Northcott C.J., Attfield P.V. Construction of Saccharomyces cerevisiae strains that accumulate relatively low concentrations of trehalose, and their application in testing the contribution of the disaccharide to stress tolerance. FEMS Microbiology Letters, 1992, 94(3): 271-276. https://doi.org/10.1111/J.1574-6968.1992.TB05330.X

Bahiru B., Mehari T., Ashenafi M. Yeast and lactic acid flora of tej, an indigenous Ethiopian honey wine: variations within and between production units. Food Microbiology, 2006, 23(3): 277-282. https://doi.org/10.1016/J.FM.2005.05.007

Bahiru B., Mehari T., Ashenafi M. Chemical and nutritional properties of `tej’, an indigenous Ethiopian honey wine: variations within and between production units. Journal of Food Technology in Africa, 2001, 6(3): 104-108. https://doi.org/10.4314/jfta.v6i3.19299

Ballesteros M., Oliva J.M., Negro M.J., Manzanares P., Ballesteros I. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry, 2004, 39(12): 1843-1848. https://doi.org/10.1016/J.PROCBIO.2003.09.011

Beyene E., Tefera A.T., Muleta D., Fantahun S.K., Wessel G.M. Molecular identification and performance evaluation of wild yeasts from different Ethiopian fermented products. Journal of Food Science and Technology, 2020, 57(9): 3436-3444. https://doi.org/10.1007/s13197-020-04377-7

Camarasa C., Sanchez I., Brial P., Bigey F., Dequin S. Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: Evidence for origin-dependent metabolic traits. PLoS One, 2011, 6(9): 25147. https://doi.org/10.1371/journal.pone.0025147

Cartwright R. Book Reviews: Book Reviews. Perspect. Public Health, 2010, 130(5): 239-239. https://doi.org/10.1177/1757913910379198

Chansom K., Sukanya N., Phonepasith S., Akio T., Noppon L., Napatchanok Y., Somchanh B., Savitree L., Mamoru Y. Isolation and characterization of thermotolerant ethanol-fermenting yeasts from Laos and application of whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis for their quick identification. African Journal of Biotechnology, 2016, 15(6): 153-164. https://doi.org/10.5897/AJB2015.14984

Deesuth O., Laopaiboon P., Laopaiboon L. High ethanol production under optimal aeration conditions and yeast composition in a very high gravity fermentation from sweet sorghum juice by Saccharomyces cerevisiae. Industrial Crops and Products, 2016, 92(12): 263-270. https://doi.org/10.1016/J.INDCROP.2016.07.042

Fakruddin M., Ariful I.M., Abdul Q.M., Morshed A.M., Chowdhury N. Characterization of stress tolerant high potential ethanol producing yeast from agro-industrial waste. American Journal of Bioscience, 2013, 1(2): 24-34. https://doi.org/10.11648/J.AJBIO.20130102.11

Fleet G.H. Wine yeasts for the future. FEMS Yeast Research. 2008, 8(7): 97-105. https://doi.org/10.1111/j.1567-1364.2008.00427.x

Fonseca G.G., Heinzle E., Wittmann C., Gombert A.K. The yeast Kluyveromyces marxianus and its biotechnological potential. Appllied Microbiology and Biotechnology, 2008, 79(3): 339-354. https://doi.org/10.1007/S00253-008-1458-6

Getnet B., Berhanu A. Microbial dynamics, roles and physico-chemical properties of korefe, a traditional fermented Ethiopian beverage. Biotechnology International, 2016, 9(7): 156-175. Available at: https://biotechnologyinternational.org/article1/9.18.pdf

Gibson B.R., Lawrence S.J., Leclaire J.P.R., Powell C.D., Smart K.A. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiology Reviews, 2007, 31(5): 535-569. https://doi.org/10.1111/J.1574-6976.2007.00076.X

Koricha A.D., Han D.Y., Bacha K., Bai F.Y. Diversity and distribution of yeasts in indigenous fermented foods and beverages of Ethiopia. Journal of the Science of Food and Agriculture, 2020, 100(3): 3630 3638. https://doi.org/10.1002/JSFA.10391

Kumar R.S., Shankar T., Anandapandian K.T.K. Characterization of alcohol resistant yeast Saccharomyces cerevisiae isolated from Toddy. International Journal of Microbiology, 2011, 2(10): 399-405. Available at: https://www.interesjournals.org/articles/characterization-of-alcohol-resistant-yeast-saccharomyces-cerevisiae-isolated-from-toddy.pdf

Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Dataset.Molecular Biology Evolution, 2016, 33(7), 870 1874. https://doi.org/10.1093/MOLBEV/MSW054

Kurtzman C.P., Fell J.W., Boekhout T., Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. The Yeasts, 2011, 1(7): 87 110. https://doi.org/10.1016/B978-0-444-52149-1.00007-0

Kurtzman C.P., Robnett C.J., Ward J.M., Brayton C., Gorelick P., Walsh T.J. Multigene phylogenetic analysis of pathogenic Candida species in the Kazachstania (Arxiozyma) telluris complex and description of their ascosporic states as Kazachstania bovina sp. nov., K. heterogenica sp. nov., K. pintolopesii sp. nov., and K. slooffiae. Journal of Clinical Microbiology, 2005, 43(1): 101-111. https://doi.org/10.1128/JCM.43.1.101-111.2005

Larkin M.A., Blackshields G., Brown N.P., Chenna R., Mcgettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21): 2947-2948. https://doi.org/10.1093/BIOINFORMATICS/BTM404

Lefyedi M.L., Marais G.J., Dutton M.F., Taylor J.R.N. The microbial contamination, toxicity and quality of turneand unturned outdoor floor malted sorghum. Journal of the Instutie Brewing, 2005, 111(2): 190-196. https://doi.org/10.1002/J.2050-0416.2005.TB00665.X

Limtong S., Sringiew C., Yongmanitchai W. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresource Technology, 2007, 98(17): 3367-3374. https://doi.org/10.1016/J.BIORTECH.2006.10.044

Lin Y., Zhang W., Li C., Sakakibara K., Tanaka S., Kong H. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy, 2014, 47(12): 395-401. https://doi.org/10.1016/J.BIOMBIOE.2012.09.019

Lopandic K., Zelger S., Bánszky L.K., Eliskases-Lechner F., Prillinger H. Identification of yeasts associated with milk products using traditional and molecular techniques. Food Microbiology, 2006, 23(4): 341-350. https://doi.org/10.1016/J.FM.2005.05.001

Negera T. Isolation and characterization of ethanol, sugar and thermo tolerant yeast isolates in Ethiopia. Internaional Journal of Research Studies in Biosciences, 2017, 5(8): 4-10. https://doi.org/10.20431/2349-0365.0508002

Noor A.A., Aloh H., Bhatti K.P., Tunio S.A. Bio-ethanol fermentation by the bioconversion of sugar from dates by Saccharomyces cerevisiae strains ASN-3 and HA-4. Biotechnology (Faisalabad). Asian Network for Scientific Information, 2002, 2(1): 8-17. https://doi.org/10.3923/BIOTECH.2003.8.17

Nwachukwu I.N., Ibekwe V.I., Nwabueze R.N., Anyanwu B.N. Characterisation of palm wine yeast isolates for industrial utilisation. African Journal of Biotechnology, 2006, 5(19): 1725-1728. Available at: https://www.ajol.info/index.php/ajb/article/view/55840/0

Ok T., Hashinaga F. Identification of sugar-tolerant yeasts isolated from high-sugar fermented vegetable extracts. Journal of General and Applied Microbiology, 1997, 43(1): 39-47. https://doi.org/10.2323/JGAM.43.39

Osho A. Ethanol and sugar tolerance of wine yeasts isolated from fermenting cashew apple juice. African Journal of Biotechnology, 2005, 4(7): 660-662. https://doi.org/10.4314/ajb.v4i7.15160

Periyasamy S., Venkatachalam S., Ramasamy S., Srinivasan V. Production of bio-ethanol from sugar molasses using Saccharomyces cerevisiae. Modern Applied Science, 2009, 3(8): 32. https://doi.org/10.5539/MAS.V3N8P32

Priya S., Sangeeta S., Aniket S. Screening and characterization of bioethanol producing yeasts from various sources. International Journal of Life Science, 2016, 4(3): 373-378.

Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academic of Sciences United States of America. 2012, 109(16): 6241-6246. https://doi.org/10.1073/pnas.1117018109

Snowden C., Schierholtz R., Poliszczuk P., Hughes S., Merwe G. ETP1⁄YHL010c is a novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol. EMS Yeast Research, 2009, 9(3): 372-380. https://doi.org/10.1111/j.1567-1364.2009.00497.x

Stanley D., Bandara A., Fraser S., Chambers P.J., Stanley G.A. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of Appllied Microbiology, 2010, 109(1): 13-24. https://doi.org/10.1111/J.1365-2672.2009.04657.X

Tafere G. A review on traditional fermented beverages of Ethiopian. Journal of Natural Sciences Research, 2015, 5(15): 2224-3186. Available at: https://core.ac.uk/download/pdf/234656053.pdf

Tamminen M., Joutsjoki T., Sjöblom M., Joutsen M., Palva A., Ryhänen E.L., Joutsjoki V. Screening of lactic acid bacteria from fermented vegetables by carbohydrate profiling and PCR ELISA. Letter in Appllied Microbiology, 2004, 39(5): 439-444. https://doi.org/10.1111/J.1472-765X.2004.01607.X

Techaparin A., Thanonkeo P., Klanrit P. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Brazilian Journal Microbiology, 2017, 48(3): 461-475. https://doi.org/10.1016/J.BJM.2017.01.006

Teramoto Y., Sato R., Ueda S. Characteristics of fermentation yeast isolated from traditional Ethiopian honey wine, ogol. African Journal of Biotechnology, 2005, 4(2): 160-163. Available at: https://www.ajol.info/index.php/ajb/article/view/15072

Tesfaw A., Oner E.T., Assefa F. Optimization of ethanol production using newly isolated ethanologenic yeasts. Biochemistry and Biophysics Reports, 2021, 25(3): 100886. https://doi.org/10.1016/J.BBREP.2020.100886

Thapa S., Shrestha R., Tirewal A., Sharma A. Isolation of yeast from soil and different food samples and its characterization based on fermentation. Nepal Jornal of Biotechnology, 2015, 3(1): 29-34. https://doi.org/10.3126/njb.v3i1.14226

Tofighi A., Mazaheri A. M., Asadirad M.H.A., Karizi S.Z. Bio-ethanol production by a novel autochthonous thermo-tolerant yeast isolated from wastewater. Journal of Enviromental Health Science And Engineering, 2014, 12(1). https://doi.org/10.1186/2052-336X-12-107

Walker G.M. Yeasts. Encyclopedia of Microbiology (Thrid Edition), 2009, pp. 478-491, Print ISBN: 9780123739445. https://doi.org/10.1016/B978-012373944-5.00335-7

White T.J., Bruns T.D., Lee S.B., Taylor J.W., Bruns S.B., Lee J.W. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR Protocols: A Guide to Methods and Applications. Academic Press, Cambridge, 1990, pp.: 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

How to Cite
FENTAHUN, Mulugeta; ANDUALEM, Berhanu. Characterization of wild indigenous yeasts that can withstand different stresses from traditional fermented beverages in the Amhara region, Ethiopia. Food Science and Applied Biotechnology, [S.l.], v. 7, n. 2, p. 262-277, oct. 2024. ISSN 2603-3380. Available at: <https://www.ijfsab.com/index.php/fsab/article/view/405>. Date accessed: 10 nov. 2024. doi: https://doi.org/10.30721/fsab2024.v7.i2.405.