Histological structure and physicochemical indicators of frozen crocodile meat Analyses of frozen crocodile meat
Main Article Content
Abstract
The objective of the present study was to determine the changes in the histological structure and some physicochemical indicators of frozen crocodile meat. Vacuum packs of frozen crocodile meat stored at -18℃ for 18 months were purchased from retail stores. Histological sections were stained by hematoxylin-eosin and Masson's trichrome staining methods. Physicochemical indicators and fatty acid composition were determined by standard methods. The histological study proved clear morphological changes in the structural components of the muscles. Physicochemical analysis showed 21.90% protein content, 6.09% lipid content, 69.56% water content, and 1.09% ash content. The largest was the amount of monounsaturated fatty acids (47.45%), followed by saturated (36.39%) and polyunsaturated fatty acids (16.53%). More studies on the histological structure and physicochemical parameters of other members of the order Crocodilya are needed to gather data on the nutritional value and biological wholesomeness of the meat from these species.
Article Details
References
BDS 5712:1974. Meat and meat products. Determination of moisture. Sofia, Bulgaria: The Bulgarian Institute of Standardization, 1974.
BDS 8549:1992. Meat and meat products. Determination of lipids. Sofia, Bulgaria: The Bulgarian Institute of Standardization, 1992.
BDS 9373:1980. Meat and meat products. Determination of ash. Sofia, Bulgaria: The Bulgarian Institute of Standardization, 1980.
BDS 9374:1982. Meat and meat products. Determination of protein content. Sofia, Bulgaria: The Bulgarian Institute of Standardization, 1982.
BDS EN ISO 12228-1:2015. Determination of individual and total sterols contents - Gas chromatographic method - Part 1: Animal and vegetable fats and oils (ISO 12228-1:2014). Sofia, Bulgaria: The Bulgarian Institute of Standardization, 2015.
BDS EN ISO 12966-4:2015. Animal and vegetable fats and oils - Gas chromatography of fatty acid methyl esters - Part 4: Determination by capillary gas chromatography (ISO 12966-4:2015). Sofia, Bulgaria: The Bulgarian Institute of Standardization, 2015.
Černíková M., Gál R., Polášek Z., Janíček M., Pachlová V., Buňka F. Comparison of the nutrient composition, biogenic amines and selected functional parameters of meat from different parts of Nile crocodile (Crocodylus niloticus). Journal of Food Composition and Analysis, 2015, 43(11): 82-87. https://doi.org/10.1016/j.jfca.2015.05.001
Chen J., Liu H. Nutritional indices for assessing fatty acids: A mini-review. International Journal of Molecular Sciences, 2020, 21(16): 5695. https://doi.org/10.3390/ijms21165695
Cossu M.E., Gonzáles O.M., Wawrzkiewicz M., Moreno D., Vieites C.M. Carcaça e qualidade da carne dez jacarés (Caiman latirostris ou jacaré de-papo amarelo e Caiman jacaré). Brazilian Journal of Veterinary Research and Animal Science, 2007, 44(5): 329-336. https://doi.org/10.11606/issn.1678-4456.bjvras.2007.26615
Commission Implementing Regulation (EU) 2021/405 of 24 March 2021 laying down the lists of third countries or regions thereof authorised for the entry into the Union of certain animals and goods intended for human consumption in accordance with Regulation (EU) 2017/625 of the European Parliament and of the Council. Official Journal of the European Union, 2021, 114: 118-150. Available at: https://eur-lex.europa.eu/eli/reg_impl/2021/405/oj
EFSA. Public health risks involved in the human consumption of reptile meat - Scientific Opinion of the Panel on Biological Hazards. EFSA Journal, 2007. Updated: 26 November 2009 https://doi.org/10.2903/j.efsa.2007.578
Gamboa-Delgado J., Ponce-Campos P., Pérez-Martínez S.G., Pacheco-Vega J.M., Villarreal-Cavazos D. Stable isotope measurements as analytical tools for the traceability of crocodile-derived products. Animal Biodiversity and Conservation, 2022, 45(2): 217-224. https://doi.org/10.32800/abc.2022.45.0217
Hoffman L.C., Cawthorn D.M. What is the role and contribution of meat from wildlife in providing high quality protein for consumption? Animal Frontiers, 2012, 2(4): 40-53. https://doi.org/10.2527/af.2012-0061
Hoffman L.C., Fisher P.P., Sales J. Carcass and meat characteristics of the Nile crocodile (Crocodylus niloticus). Journal of the Science of Food and Agriculture, 2000, 80(3): 390-396. https://doi.org/10.1002/1097-0010(200002)80:3<390::AID-JSFA540>3.0.CO;2-G
Huang Y.R., Tsai Y.H., Liu C.L., Syue W.Z., Su Y.C. Chemical characteristics of different tissues of Spectacled Caiman (Caiman crocodilus). Journal of Aquatic Food Product Technology, 2018, 27(2): 132-143. https://doi.org/10.1080/10498850.2017.1407854
Isberg S.R. Nutrition of juvenile saltwater crocodiles (Crocodylus porosus) in commercial production systems. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2007, 2(4): 091. https://doi.org/10.1079/PAVSNNR20072091
Kluczkovski Junior A., Kluczkovski A.M., Moroni F.T., Markendorf F., Inhamuns A.J. Carcass yield and proximate composition of black caiman (Melanosuchus niger) meat. International Journal of Fisheries and Aquaculture, 2015, 7(4): 47-53. https://doi.org/10.5897/IJFA14.0453
Leak F.W., Lane T.J., Johnson D.D., Lamkey J.W. Increasing the profitability of florida alligator carcasses. Institute of Food and Agricultural Services, AN137U-University of Florida, 2003, 7. https://doi.org/10.32473/edis-an137-2003
Li T., Kuang S., Hu L., Nie P., Ramaswamy H.S., Yu Y. Influence of the pressure shift freezing and thawing on the microstructure of largemouth bass. Innovative Food Science & Emerging Technologies, 2022, 82(12): 103176. https://doi.org/10.1016/j.ifset.2022.103176
Lin W.L., Zeng Q.X., Zhu Z.W. Different changes in mastication between crisp grass carp (Ctenopharyngodon idellus C.et V) and grass carp (Ctenopharyngodon idellus) after heating: The relationship between texture and ultrastructure in muscle tissue. Food Research International, 2009, 42(2): 271-278. https://doi.org/10.1016/j.foodres.2008.11.005
Lochan Poudyal R., Maekawa R., Redo M.A., Khanal R., Suzuki T., Watanabe M. Effect of supercooled freezing on the quality of pork tenderloin meat under different thawing conditions. Food Control, 2023, 144(2): 109331. https://doi.org/10.1016/j.foodcont.2022.109331
Luthada-Raswiswi R., Mukaratirwa S., O’Brien G. Nutritional value of the Nile crocodile (Crocodylus niloticus) Meal for Aquaculture Feeds in South Africa. Journal of FisheriesSciences.com. 2019, 13(2): 20-25. https://doi.org/10.36648/1307-234X.13.2.162
Lv Y., Chu Y., Zhou P., Mei J., Xie J. Effects of different freezing methods on water distribution, microstructure and protein properties of cuttlefish during the frozen storage. Applied Sciences, 2021, 11(15): 6866. https://doi.org/10.3390/app11156866
Mdhluvu R.M., Mlambo V., Madibana M.J., Mwanza M., O’Brien G. Crocodile meat meal as a fishmeal substitute in juvenile dusky kob (Argyrosomus japonicus) diets: Feed utilization, growth performance, blood parameters, and tissue nutrient composition. Aquaculture Reports, 2021, 21(11): 100779. https://doi.org/10.1016/j.aqrep.2021.100779
Morais C.S.N., Morais Junior N.N., Vicente-Neto J., Ramos E.M., Almeida J., Roseiro C., Santos C., Gama L.T., Bressan M.C. Mortadella sausage manufactured with Caiman yacare (Caiman crocodilus yacare) meat, pork backfat, and soybean oil. Meat Science, 2013, 95(2): 403-411. https://doi.org/10.1016/j.meatsci.2013.04.017
Nongtaodum S, Raksakulthai N, Chaiyawat M. Product development of crocodile jerky. Kasetsart Journal, 2005, 39: 300-307. Available at: https://www.thaiscience.info/journals/Article/TKJN/10603895.pdf
Osthoff G., Hugo A., Bouwman H., Buss P., Govender D., Joubert C.C., Swarts J.C. Comparison of the lipid properties of captive, healthy wild, and pansteatitis-affected wild Nile crocodiles (Crocodylus niloticus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2010, 155(1): 64-69. https://doi.org/10.1016/j.cbpa.2009.09.025
Pavlov A., Dimitrov D., Penchev G., Georgiev L. Structural changes in common carp (Cyprinus carpio L.) fish meat during freezing. Bulgarian Journal Of Veterinary Medicine, 2008, 11(2): 131-136. http://tru.uni-sz.bg/bjvm/bjvm.htm
Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Official Journal of the European Union, 2015, 327: 1-22. Available at: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32015R2283
Rinwi T.G., Sun D.W., Ma J., Wang Q.J. Effects of isochoric freezing on freezing process and quality attributes of chicken breast meat. Food Chemistry, 2023, 405(3): 134732. https://doi.org/10.1016/j.foodchem.2022.134732
Saadoun A., Cabrera M.C. A review of the nutritional content and technological parameters of indigenous sources of meat in South America. Meat Science, 2008, 80(3): 570-581. https://doi.org/10.1016/j.meatsci.2008.03.027
Santos-Silva J., Bessa R.J.B., Santos-Silva F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. Livestock Production Science, 2002, 77(2-3): 187-194. https://doi.org/10.1016/S0301-6226(02)00059-3
Shui S., Yang H., Lu B., Zhang B. Phosphorylated trehalose suppresses the denaturation of myofibrillar proteins in peeled shrimp (Litopenaeus vannamei) during Long-Term Frozen Storage. Foods, 2022, 11(20): 3189. https://doi.org/10.3390/foods11203189
Simopoulos A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine, 2008, 233(6): 674-688. https://doi.org/10.3181/0711-MR-311
Stratev D., Popova T., Zhelyazkov G., Vashin I., Dospatliev L., Valkova E. Seasonal changes in quality and fatty acid composition of Black Mussel (Mytilus galloprovincialis). Journal of Aquatic Food Product Technology, 2017, 26(7): 871-879. https://doi.org/10.1080/10498850.2017.1346742
Strateva M., Penchev G., Stratev D. Histological, physicochemical and microbiological changes in the carp (Cyprinus carpio) muscles after freezing. Journal of Aquatic Food Product Technology, 2021, 30(3): 324-338. https://doi.org/10.1080/10498850.2021.1882633
Strateva M., Penchev G., Stratev D. Influence of freezing on muscles of rainbow trout (Oncorhynchus mykiss): A Histological and microbiological study. Journal of Food Quality and Hazards Control, 2021, 8(1): 2-12. https://doi.org/10.18502/jfqhc.8.1.5457
Strateva M., Penchev G. Histological, physicochemical and microbiological changes in fresh and frozen/thawed fish. Bulgarian Journal of Veterinary Medicine, 2020, 23(1): 69-80. https://doi.org/10.15547/tjs.2020.01.012
Strateva М., Penchev G. Histological discrimination of fresh from frozen/thawed carp (Cyprinus carpio). Bulgarian Journal of Veterinary Medicine, 2021, 24(3): 434-441. https://doi.org/10.15547/bjvm.2019-0113
Tinacci L., Armani A., Guidi A., Nucera D., Shvartzman D., Miragliotta V., Coli A., Giannessi E., Stornelli M.R., Fronte B., Di Iacovo F., Abramo F. Histological discrimination of fresh and frozen/thawed fish meat: European hake (Merluccius merluccius) as a possible model for white meat fish species. Food Control, 2018, 92(10): 154-161. https://doi.org/10.1016/j.foodcont.2018.04.056
Ulbricht T.L.V., Southgate D.A.T. Coronary heart disease: seven dietary factors. The Lancet, 1991, 338(8773): 985-992. https://doi.org/10.1016/0140-6736(91)91846-M
Vicente-Neto J., Bressan M.C., Faria P.B., e Vieira J.O., Cardoso M.D.G., Glória M.B.D.A., da Gama L.T. Fatty acid profiles in meat from Caiman yacare (Caiman crocodilus yacare) raised in the wild or in captivity. Meat Science, 2010, 85(4): 752-758. https://doi.org/10.1016/j.meatsci.2010.03.036
Zhang X., Armani A., Giusti A., Wen J., Fan S., Ying X. Molecular authentication of crocodile dried food products (meat and feet) and skin sold on the Chinese market: Implication for the European market in the light of the new legislation on reptile meat. Food Control, 2021, 124(6): 107884. https://doi.org/10.1016/j.foodcont.2021.107884
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Open access articles are distributed under the terms and conditions of the Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0) license:
https://creativecommons.org/licenses/by-sa/4.0
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102