Main Article Content

Laky Khatun Rangina Brahma, Miss Subhajit Ray, Dr.

Abstract

The cereal food group contributes significant amounts of the major macronutrients and micronutrients, making it an essential part of a healthy diet. The primary food for nutrition, energy, and nourishment in India, especially in North Eastern India, is rice. It is rich in dietary fiber, vitamin B including niacin, riboflavin, and thiamin, in addition to minerals like phosphorus, potassium, and magnesium. Germination as a biochemical process has the ability to enhance the nutritional value of whole brown rice grains and bioactive properties of rice. It is a time-honored, cost-effective way to prepare sprouted seeds. Since, high molecular proteins break down into low molecular proteins during germination, this process impacts on product qualities including odor, bioactivity and digestibility, which is advantageous for baby nutrition. Varying steeping time or water pH causes changes in reducing sugar, free GABA, and amylase activity, however, there is a decrease in total starch content. Gamma-aminobutyric acid (GABA) inhibits leukemia cell proliferation and stimulates cancer cell Apoptosis. Therefore, the aim of this present review is to highlight the biochemical changes that occur in rice due to germination and its health benefits.

Article Details

References

Al-Hazmi N.E., Naguib D.M. Amylase properties and its metal tolerance during rice germination improved by priming with rhizobacteria. Rhizosphere, 2022, 22(6): 100518. https://doi.org/10.1016/j.rhisph.2022.100518

Ayernor G., Ocloo F. Physico-chemical changes and diastatic activity associated with germinating paddy rice (PSB. Rc 34). African Journal of Food Science, 2007, 1(3): 037-041. https://doi.org/10.5897/AJFS.9000227 https://academicjournals.org/journal/AJFS/article-abstract/88F3E9211186

Bhattacharjee S., Chakrabarty A., Kora D., Roy U.K. Hydrogen peroxide induced antioxidant-coupled redox regulation of germination in rice: redox metabolic, transcriptomic and proteomic evidences. Journal of Plant Growth Regulation, 2023, 42(3): 1084-1106. https://doi.org/10.1007/s00344-022-10615-3

Bhattacharya S. Chemical and Nutritional Properties of Brown Rice. In: Brown Rice (A. Manickavasagan, C. Santhakumar, N. Venkatachalapathy Eds.). Springer, Cham. 2017, pp. 93-110. Print ISBN: 978-3-319-59010-3, Online ISBN: 978-3-319-59011-0 https://doi.org/10.1007/978-3-319-59011-0_6

Bolarinwa I.F., Lim P.T., Muhammad K. Quality of gluten-free cookies from germinated brown rice flour. Food Research, 2019, 3(3): 199-207. https://doi.org/10.26656/fr.2017.3(3).228

Cáceres P.J., Peñas E., Martínez-Villaluenga C., García-Mora P., Frías J. Development of a multifunctional yogurt-like product from germinated brown rice. LWT, 2019, 99(1): 306-312. https://doi.org/10.1016/j.lwt.2018.10.008

Carciochi R.A., Dimitrov K., Galván D´ Alessandro L. Effect of malting conditions on phenolic content, Maillard reaction products formation, and antioxidant activity of quinoa seeds. Journal of Food Science and Technology, 2016, 53(11): 3978-3985. https://doi.org/10.1007/s13197-016-2393-7

Chaijan M., Panpipat W. Nutritional composition and bioactivity of germinated Thai indigenous rice extracts: A feasibility study. Plos ONE, 2020, 15(8): e0237844. https://doi.org/10.1371/journal.pone.0237844

Charoenthaikij P., Jangchud K., Jangchud A., Piyachomkwan K., Tungtrakul P., Prinyawiwatkul W. Germination conditions affect physicochemical properties of germinated brown rice flour. Journal of Food Science, 2009, 74(9): C658-C665. https://doi.org/10.1111/j.1750-3841.2009.01345.x

Cheirsilp B., Mekpan W., Sae-ear N., Billateh A., Boukaew S. Enhancing functional properties of fermented rice cake by using germinated black glutinous rice, probiotic yeast, and enzyme technology. Food and Bioprocess Technology, 2023, 16(5): 1116-1127. https://doi.org/10.1007/s11947-022-02985-z

Chen C., Tao Y., Han Y., Ding Y., Jian X., Li D. Preparation of germinated brown rice with high γ-aminobutyric acid content and short root by magnetic field treatment. Journal of Cereal Science, 2023, 112(7): 103720. https://doi.org/10.1016/j.jcs.2023.103720

Chen H.H., Chang H.C., Chen Y.K., Hung C.L., Lin S.Y., Chen Y.S. An improved process for high nutrition of germinated brown rice production: Low-pressure plasma. Food Chemistry, 2016, 191(1): 120-127. https://doi.org/10.1016/j.foodchem.2015.01.083

Chinma C.E., Abu J.O., Adedeji O.E., Aburime L.C., Joseph D.G., Agunloye G.F., Adebo O.A. Nutritional composition, bioactivity, starch characteristics, thermal and microstructural properties of germinated pigeon pea flour. Food Bioscience ,2022, 49(10): 101900. https://doi.org/10.1016/j.fbio.2022.101900

Chinma C.E., Anuonye J.C., Simon O.C., Ohiare R.O., Danbaba N. Effect of germination on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria. Food Chemistry, 2015, 185(10): 454-458. https://doi.org/10.1016/j.foodchem.2015.04.010

Cho D.-H., Lim S.-T. Germinated brown rice and its bio-functional compounds. Food Chemistry, 2016, 196(4): 259-271. https://doi.org/10.1016/j.foodchem.2015.09.025

Chu C., Du Y., Yu X., Shi J., Yuan X., Liu X., Yan N. Dynamics of antioxidant activities, metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice (Zizania latifolia). Food Chemistry, 2020, 318(7): 126483. https://doi.org/10.1016/j.foodchem.2020.126483

Ding J., Yang T., Feng H., Dong M., Slavin M., Xiong S., Zhao S. Enhancing contents of γ-aminobutyric acid (GABA) and other micronutrients in dehulled rice during germination under normoxic and hypoxic conditions. Journal of Agricultural and Food Chemistry, 2016, 64(5): 1094-1102. https://doi.org/10.1021/acs.jafc.5b04859

do Nascimento L.Á., Abhilasha A., Singh J., Elias M.C., Colussi R. Rice germination and its impact on technological and nutritional properties: A review. Rice Science, 2022, 29(3): 201-215. https://doi.org/10.1016/j.rsci.2022.01.009

Đorđević T.M., Šiler-Marinković S.S., Dimitrijević-Branković S.I. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chemistry, 2010. 119(3): 957-963. https://doi.org/10.1016/j.foodchem.2009.07.049

Elbaloula M.F., Hassan A.B. Effect of different salt concentrations on the gamma‐aminobutyric‐acid content and glutamate decarboxylase activity in germinated sorghum (Sorghum bicolor L. Moench) grain. Food Science & Nutrition, 2022, 10(6): 2050-2056. https://doi.org/10.1002/fsn3.2821

Ferreira C.D., Bubolz V.K., da Silva J., Dittgen C.L., Ziegler V., de Oliveira Raphaelli C., de Oliveira M. Changes in the chemical composition and bioactive compounds of chickpea (Cicer arietinum L.) fortified by germination. LWT, 2019, 111(8): 363-369. https://doi.org/10.1016/j.lwt.2019.05.049

Frank T., Scholz B., Peter S., Engel K.-H. Metabolite profiling of barley: Influence of the malting process. Food Chemistry, 2011, 124(3): 948-957. https://doi.org/10.1016/j.foodchem.2010.07.034

Fukushima A., Uchino G., Akabane T., Aiseki A., Perera I., Hirotsu N. Phytic acid in brown rice can be reduced by increasing soaking temperature. Foods, 2020, 10(1): 23. https://doi.org/10.3390/foods10010023

Guzmán-Ortiz F.A., Castro-Rosas J., Gómez-Aldapa C.A., Mora-Escobedo R., Rojas-León A., Rodríguez-Marín, M.L., Falfán-Cortés R.N., Román-Gutiérrez A.D. Enzyme activity during germination of different cereals: A review. Food Reviews International, 2019, 35(3): 177-200. https://doi.org/10.1080/87559129.2018.1514623

Ha N.C., Thao D.L.P., Ngoc N.T.L. Ergothioneine extract from Aspergillus oryzae prevents lipid oxidation and increases bioactive compounds during the processing of germinated brown rice. Journal of Food Processing and Preservation, 2022, 46(1): e16211. https://doi.org/10.1111/jfpp.16211

Hampton R.M., Atungulu G., Rolland V., Wilson S.A., McKay T. Effects of infrared radiation on germination of long grain rice. Applied Engineering in Agriculture, 2022, 38(1): 129-133. https://doi.org/10.13031/aea.14774

He D., Han C., Yao J., Shen S., Yang P. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics, 2011, 11(13): 2693-2713. https://doi.org/10.1002/pmic.201000598

Hussain S.Z., Jabeen R., Naseer B.,Shikari A.B. Effect of soaking and germination conditions on γ-aminobutyric acid and gene expression in germinated brown rice. Food Biotechnology, 2020, 34(2): 132-150. https://doi.org/10.1080/08905436.2020.1744448

Jamil M., Jahangir M., Rehman S.U. Smoke induced physiological, biochemical and molecular changes in germinating rice seeds. Pakistan Journal of Botany, 2020, 52(3): 865-871. http://doi.org/10.30848/PJB2020-3(37)

Jeong H.S., Lee Y.R., Lee S.H., Jang G.Y., Lee Y.J., Kim M.Y., Kim Y.-B., Lee J. Antioxidative and antidiabetic effects of germinated rough rice extract in 3T3-L1 adipocytes and C57BLKS/J-db/db mice. Food & Nutrition Research, 2019, 63(11): 3603. https://doi.org/10.29219/fnr.v63.3603

Kamjijam B., Bednarz H., Suwannaporn P., Jom K.N., Niehaus K. Localization of amino acids in germinated rice grain: Gamma-aminobutyric acid and essential amino acids production approach. Journal of Cereal Science, 2020, 93(1): 102958. https://doi.org/10.1016/j.jcs.2020.102958

Kang S.J., Jeong S.Y., Islam M.Z., Shin B.K., Park Y.J., Kim J.K., Lee J.H. Bioactive compounds and quality evaluation of red-pigmented rice processed by germination and roasting. Foods, 2022, 11(18): 2735. https://doi.org/10.3390/foods11182735

Kaur, M., Asthir, B.,Mahajan, G.. Variation in antioxidants, bioactive compounds and antioxidant capacity in germinated and ungerminated grains of ten rice cultivars. Rice Science, 2017, 24(6): 349-359. https://doi.org/10.1016/j.rsci.2017.08.002

Kim, H. J., Han, J. A., Lim, S. T., Cho, D. H. Effects of germination and roasting on physicochemical and sensory characteristics of brown rice for tea infusion. Food Chemistry, 2021, 350(7): 129240. https://doi.org/10.1016/j.foodchem.2021.129240

Kim H.Y., Hwang I.G., Kim T.M., Woo K.S., Park D.S., Kim J.H., Kim D.J., Lee J., Lee Y.R., Jeong H.S. Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chemistry, 2012, 134(1): 288-293. https://doi.org/10.1016/j.foodchem.2012.02.138

Kim M.Y., Jang G.Y., Lee Y., Li M., Ji Y.M., Yoon N., Lee S.H., Kim K.M., Lee J., Jeong H.S. Free and bound form bioactive compound profiles in germinated black soybean (Glycine max L.). Food Science and Biotechnology, 2016, 25(8): 1551-1559. https://doi.org/10.1007/s10068-016-0240-2

Kim M.Y., Lee S.H., Jang G.Y., Li M., Lee Y.R., Lee J., Jeong H.S. Changes of phenolic-acids and vitamin E profiles on germinated rough rice (Oryza sativa L.) treated by high hydrostatic pressure. Food Chemistry, 2017, 217(2): 106-111. https://doi.org/10.1016/j.foodchem.2016.08.069

Kondhare K., Farrell A., Kettlewell P., Hedden P., Monaghan J. Pre-maturity α-amylase in wheat: The role of abscisic acid and gibberellins. Journal of Cereal Science, 2015, 63(5): 95-108. https://doi.org/10.1016/j.jcs.2015.03.004

Kong L., Lin Y., Liang J., Hu X., Ashraf U., Guo X., Bai S. Dynamic changes in vitamin E biosynthesis during germination in brown rice (Oryza sativa L.). Foods, 2022, 11(20): 3200. https://doi.org/10.3390/foods11203200

Krishnan V., Rani R., Awana M., Pitale D., Kulshreshta A., Sharma S., Bollinedi H., Singh A., Singh B., Singh A.K., Praveen S. Role of nutraceutical starch and proanthocyanidins of pigmented rice in regulating hyperglycemia: Enzyme inhibition, enhanced glucose uptake and hepatic glucose homeostasis using in vitro model. Food Chemistry, 2021, 335(1): 127505. https://doi.org/10.1016/j.foodchem.2020.127505

Lekjing S.,Venkatachalam K. Effects of germination time and kilning temperature on the malting characteristics, biochemical and structural properties of HomChaiya rice. RSC advances, 2020, 10(28): 16254-16265. https://doi.org/10.1039/D0RA01165G

Liao Y.K., Juan I.P. Improving the germination of somatic embryos of Picea morrisonicola Hayata: Effects of cold storage and partial drying. Journal of forest research, 2015, 20(1): 114-124. https://doi.org/10.1007/s10310-014-0445-2.

Lin P.Y., Li S.C., Lin H.P., Shih C.K. Germinated brown rice combined with Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis inhibits colorectal carcinogenesis in rats. Food Science & Nutrition, 2019, 7(1): 216-224. https://doi.org/10.1002/fsn3.864

Liu Z., Ma C., Hou L., Wu X., Wang D., Zhang L., Liu P. Exogenous SA affects rice seed germination under salt stress by regulating na+/k+ balance and endogenous GAs and ABA homeostasis. International Journal of Molecular Sciences, 2022, 23(6): 3293. https://doi.org/10.3390/ijms23063293

Lu S., Wu J., Gao Y., Han G., Ding W., Huang X. MicroRNA-4262 activates the NF-κB and enhances the proliferation of hepatocellular carcinoma cells. International Journal of Biological Macromolecules, 2016, 86(5): 43-49. https://doi.org/10.1016/j.ijbiomac.2016.01.019

Luo X., Li D., Tao Y., Wang P., Yang R., Han Y. Effect of static magnetic field treatment on the germination of brown rice: changes in α-amylase activity and structural and functional properties in starch. Food Chemistry, 2022, 383(7): 132392. https://doi.org/10.1016/j.foodchem.2022.132392

Matsunami M., Hayashi H., Murai-Hatano M., Ishikawa-Sakurai J. Effect of hydropriming on germination and aquaporin gene expression in rice. Plant Growth Regulation, 2022, 97(2): 263-270. https://doi.org/10.1007/s10725-021-00725-5

McKie V.A., McCleary B.V. A rapid, automated method for measuring α-amylase in pre-harvest sprouted (sprout damaged) wheat. Journal of Cereal Science, 2015, 64(7): 70-75. https://doi.org/10.1016/j.jcs.2015.04.009

Miransari M., Smith D. Plant hormones and seed germination. Environmental and Experimental Botany, 2014, 99(3): 110-121. https://doi.org/10.1016/j.envexpbot.2013.11.005

Mohan B.H., Malleshi N.G., Koseki T. Physico-chemical characteristics and nonstarch polysaccharide contents of Indica and Japonica brown rice and their malts. LWT-Food Science and Technology, 2010, 42(5): 784-791. https://doi.org/10.1016/j.lwt.2010.01.002

Moongngarm A., Saetung N. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chemistry, 2010, 122(3): 782-788. https://doi.org/10.1016/j.foodchem.2010.03.053

Moongngarm A., Moontree T., Deedpinrum P., Padtong K. Functional properties of brown rice flour as affected by germination. APCBEE procedia, 2014, 8(1): 41-46. https://doi.org/10.1016/j.apcbee.2014.01.077

Müller C.P., Hoffmann J.F., Ferreira C.D., Diehl G.W., Rossi R.C., Ziegler V. Effect of germination on nutritional and bioactive properties of red rice grains and its application in cupcake production. International Journal of Gastronomy and Food Science, 2021, 25(10): 100379. https://doi.org/10.1016/j.ijgfs.2021.100379

Nelson K., Stojanovska L., Vasiljevic T., Mathai M. Germinated grains: a superior whole grain functional food? Canadian Journal of Physiology and Pharmacology, 2013, 91(6): 429-441. https://doi.org/10.1139/cjpp-2012-0351

Nguyen B.C.Q., Shahinozzaman M., Tien N.T.K., Thach T.N., Tawata S. Effect of sucrose on antioxidant activities and other health-related micronutrients in gamma-aminobutyric acid (GABA)-enriched sprouting Southern Vietnam brown rice. Journal of Cereal Science, 2020, 93(5): 102985. https://doi.org/10.1016/j.jcs.2020.102985

Nile S.H., Thiruvengadam M., Wang Y., Samynathan R., Shariati M.A., Rebezov M., Nile A., Sun M., Venkidasamy B., Xiao J., Kai G. Nano-priming as emerging seed priming technology for sustainable agriculture - recent developments and future perspectives. Journal of Nanobiotechnology, 2022, 20(1): 1-31. https://doi.org/10.1186/s12951-022-01423-8

Nkhata S.G., Ayua E., Kamau E.H., Shingiro J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition, 2018, 6(8): 2446-2458. https://doi.org/10.1002/fsn3.846

Ohtsubo K., Suzuki K., Yasui Y., Kasumi K. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. Journal of Food Composition and Analysis, 2005, 18(4): 303-316. https://doi.org/10.1016/j.jfca.2004.10.003

Owolabi I.O., Dat-arun P., Yupanqui C.T., Wichienchot S. Gut microbiota metabolism of functional carbohydrates and phenolic compounds from soaked and germinated purple rice. Journal of Functional Foods, 2020, 66(3): 103787. https://doi.org/10.1016/j.jff.2020.103787

Owolabi I.O., Saibandith B., Wichienchot S., Yupanqui C.T. Nutritional compositions, polyphenolic profiles and antioxidant properties of pigmented rice varieties and adlay seeds enhanced by soaking and germination conditions. Functional Foods in Health and Disease, 2018, 8(12): 561-578. https://doi.org/10.31989/ffhd.v8i12.564

Park H.-Y., Lee K.-W., Choi H.-D. Rice bran constituents: Immunomodulatory and therapeutic activities. Food & Function, 2017, 8(3): 935-943. https://doi.org/10.1039/C6FO01763K

Pinheiro S.S., Anunciação P.C., de Morais Cardoso L., Della Lucia C.M., de Carvalho C.W.P., Queiroz V.A.V., Sant'Ana H.M.P. Stability of B vitamins, vitamin E, xanthophylls and flavonoids during germination and maceration of sorghum (Sorghum bicolor L.). Food Chemistry ,2021, 345(5): 128775. https://doi.org/10.1016/j.foodchem.2020.128775

Pramai P., Hamid N.A.A., Mediani A., Maulidiani M., Abas F., Jiamyangyuen S. Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: Nuclear-magnetic-resonance-based metabolomics study. Journal of Food and Drug Analysis, 2018, 26(1): 47-57. https://doi.org/10.1016/j.jfda.2016.11.023

Ravichanthiran K., Ma Z.F., Zhang H., Cao Y., Wang C.W., Muhammad S., Aglago E.K., Zhang Y., Jin Y., Pan B. Phytochemical profile of brown rice and its nutrigenomic implications. Antioxidants, 2018, 7(6): 71. https://doi.org/10.3390/antiox7060071

Rice production by Country 2023. Available at: https://worldpopulationreview.com/country-rankings/rice-production-by-country

Shabbir U., Tyagi A., Ham H.J., Oh D.H. Comprehensive profiling of bioactive compounds in germinated black soybeans via UHPLC-ESI-QTOF-MS/MS and their anti-Alzheimer’s activity. Plos ONE, 2022, 17(1): e0263274. https://doi.org/10.1371/journal.pone.0263274

Sibian M.S., Saxena D.C., Riar C.S. Effect of germination on chemical, functional and nutritional characteristics of wheat, brown rice and triticale: a comparative study. Journal of the Science of Food and Agriculture, 2017, 97(13): 4643-4651. https://doi.org/10.1002/jsfa.8336

Singh A.K., Rehal J., Kaur A., Jyot G. Enhancement of attributes of cereals by germination and fermentation: a review. Critical Reviews in Food Science and Nutrition, 2015, 55(11): 1575-1589. https://doi.org/10.1080/10408398.2012.706661

Singh A., Sharma S., Singh B. Germination behaviour, physico-nutritional properties, and diastase activity of brown rice influenced by germination time and temperature. Acta Alimentaria, 2018, 47(1): 70-79. https://doi.org/10.1556/066.2018.47.1.9

Sinha K., Kaur R., Singh N., Kaur S., Rishi V., Bhunia R.K. Mobilization of storage lipid reserve and expression analysis of lipase and lipoxygenase genes in rice (Oryza sativa var. Pusa Basmati 1) bran during germination. Phytochemistry, 2020, 180(12): 112538. https://doi.org/10.1016/j.phytochem.2020.112538

Szewińska J., Simińska J., Bielawski W. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds. Journal of Plant Physiology, 2016, 207(12): 10-21. https://doi.org/10.1016/j.jplph.2016.09.008

Tuiwong P., Lordkaew S., Veeradittakit J., Jamjod S., Prom-u-thai C. Seed Priming and foliar application with nitrogen and zinc improve seedling growth, yield, and zinc accumulation in rice. Agriculture, 2022, 12(2): 144. https://doi.org/10.3390/agriculture12020144

Tuntipopipat S., Muangnoi C., Thiyajai P., Srichamnong W., Charoenkiatkul S., Praengam K. A bioaccessible fraction of parboiled germinated brown rice exhibits a higher anti-inflammatory activity than that of brown rice. Food & Function, 2015, 6(5): 1480-1488. https://doi.org/10.1039/C4FO01194E

Tyagi A., Chen X., Shabbir U., Chelliah R., Oh D.H. Effect of slightly acidic electrolyzed water on amino acid and phenolic profiling of germinated brown rice sprouts and their antioxidant potential. LWT, 2022, 157(3): 113119. https://doi.org/10.1016/j.lwt.2022.113119

Van Hung P., Yen N.T.H., Phi N.T.L., Tien N.P.H., Trung N.T.T. Nutritional composition, enzyme activities and bioactive compounds of mung bean (Vigna radiata L.) germinated under dark and light conditions. LWT, 2020, 133(11): 110100. https://doi.org/10.1016/j.lwt.2020.110100

Veeradittakit J., Jumrus S., Sringarm K., Prom‐u‐thai C. Improving nutritional values in purple rice through germination and parboiling processes. Journal of Food Processing and Preservation, 2021, 45(2): e14979. https://doi.org/10.1111/jfpp.14979

Veluppillai S., Nithyanantharajah K., Vasantharuba S., Balakumar S., Arasaratnam V. Biochemical changes associated with germinating rice grains and germination improvement. Rice Science, 2009, 16(3): 240-242. https://doi.org/10.1016/S1672-6308(08)60085-2

Waleed A.A., Mahdi A.A., Al-Maqtari Q.A., Mushtaq B.S., Ahmed A., Karrar E., Mohammed J.K., Fan M., Li Y., Qian H., Wang L. The potential improvements of naked barley pretreatments on GABA, β-glucan, and antioxidant properties. LWT, 2020, 130(8): 109698. https://doi.org/10.1016/j.lwt.2020.109698

Wang H., Qiu C., Abbasi A.M., Chen G., You L., Li T., Fu X., Wang Y., Guo X., Liu R.H. Effect of germination on vitamin C, phenolic compounds and antioxidant activity in flaxseed (Linum usitatissimum L.). International Journal of Food Science & Technology, 2015, 50(12): 2545-2553. https://doi.org/10.1111/ijfs.12922

Wang Y., Liu S., Yang X., Zhang J., Zhang Y., Liu X., Zhang H., Wang H. Effect of germination on nutritional properties and quality attributes of glutinous rice flour and dumplings. Journal of Food Composition and Analysis, 2022, 108(5): 104440. https://doi.org/10.1016/j.jfca.2022.104440

Wu F., Chen H., Yang N., Wang J., Duan X., Jin Z., Xu X. Effect of germination time on physicochemical properties of brown rice flour and starch from different rice cultivars. Journal of Cereal Science, 2013, 58(2): 263-271. https://doi.org/10.1016/j.jcs.2013.06.008

Wu B., Zeng Z., Wu X., Li Y., Wang F., Yang J., Li X. Jasmonic acid negatively regulation of root growth in Japonica rice (Oryza sativa L.) under cadmium treatment. Plant Growth Regulation, 2022, 98(3): 651-667. https://doi.org/10.1007/s10725-022-00897-8

Wunthunyarat W., Seo H.S., Wang Y.J. Effects of germination conditions on enzyme activities and starch hydrolysis of long‐grain brown rice in relation to flour properties and bread qualities. Journal of Food Science, 2020, 85(2): 349-357. https://doi.org/10.1111/1750-3841.15008

Xia Q., Li Y. Mild high hydrostatic pressure pretreatments applied before soaking process to modulate wholegrain brown rice germination: An examination on embryo growth and physicochemical properties. Food Research International, 2018, 106(4): 817-824. https://doi.org/10.1016/j.foodres.2018.01.052

Xia Q., Wang L., Xu C., Mei J., Li Y. Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chemistry, 2017, 214(1): 533-542. https://doi.org/10.1016/j.foodchem.2016.07.114

Xu L., Wang P., Ali B., Yang N., Chen Y., Wu F., Xu X. Changes of the phenolic compounds and antioxidant activities in germinated adlay seeds. Journal of the Science of Food and Agriculture, 2017, 97(12): 4227-4234. https://doi.org/10.1002/jsfa.8298

Yodpitak S., Mahatheeranont S., Boonyawan D., Sookwong P., Roytrakul S., Norkaew O. Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chemistry, 2019, 289(8): 328-339. https://doi.org/10.1016/j.foodchem.2019.03.061

Yu Y., Deng L., Zhou L., Chen G., Wang Y. Exogenous melatonin activates antioxidant systems to increase the ability of Rice seeds to germinate under high temperature conditions. Plants, 2022, 11(7): 886. https://doi.org/10.3390/plants11070886

Zhang G., Xu Z., Gao Y., Huang X., Zou Y., Yang T. Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. Journal of Food Science, 2015, 80(5): H1111-H1119. https://doi.org/10.1111/1750-3841.12830

Zhang H., Zhang Y., Wang T., Wang R., Feng W. Effect of coercion germination through combined calcium and aeration treatment on the edible and physicochemical characteristics of brown rice. Food Biophysics, 2022, 17(4): 612-620. https://doi.org/10.1007/s11483-022-09739-6

Zhang L., Du L., Shi T., Xie M., Liu X.,Yu M. Effects of pulsed light on germination and gamma‐aminobutyric acid synthesis in brown rice. Journal of Food Science, 2022, 87(4): 1601-1609. https://doi.org/10.1111/1750-3841.16087

Zhang Q., Xiang J., Zhang L., Zhu X., Evers J., van der Werf W., Duan L. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. Journal of Functional Foods, 2014, 10(9): 283-291. https://doi.org/10.1016/j.jff.2014.06.009

How to Cite
KHATUN, Laky; BRAHMA, Rangina; RAY, Subhajit. Nutritional and functional potentials of germinated rice: A systematic review. Food Science and Applied Biotechnology, [S.l.], v. 6, n. 2, p. 263-281, oct. 2023. ISSN 2603-3380. Available at: <https://www.ijfsab.com/index.php/fsab/article/view/286>. Date accessed: 13 nov. 2024. doi: https://doi.org/10.30721/fsab2023.v6.i2.286.