Main Article Content

Jimena Limachi Susana Huanca Grover Castañeta Daniela Miranda-Flores Valeria Palma Jorge Yañiquez Leslie Tejeda Patricia Mollinedo Krasimir Dimov Teodora Popova Mauricio Peñarrieta

Abstract

Though widely used in the Andes in the ancient times, canihua has been considered a forgotten crop for a long time. Only lately, due to increasing demand in European countries, canihua reveals significantly growing market potential. With the current scarcity of research about the composition, nutritional and healthy profile, this study aimed to provide new information about the antioxidant capacity and the fatty acid profile of Bolivian canihua cultivars with different grain colour. Samples of 28 cultivars were used in the study, divided into three groups according to the grain colour– light brown, pink and dark brown. Total antioxidant capacity, content of the total phenols and flavonoids, as well as fatty acid composition were quantified for the groups. The cultivars with light brown grains displayed the strongest antioxidant potential and the highest content of phenols and flavonoids. Regardless of the colour, canihua cultivars were rich in saturated fatty acids, linoleic and oleic acid. The pink grained cultivars displayed the most favourable fatty acid profile, with lowest amount of C16:0. Correlation analysis showed that total phenols and flavonoids, as well as saturated and monounsaturated fatty acids had strong and positive contribution for the antioxidant potential of the canihua grains.

Article Details

References

Abderrahim F., Huanatico E., Repo-Carrasco-Valencia R., Arribas S.M., Gonzalez M.C., Condezo-Hoyos L. Effect of germination on total phenolic compounds, total antioxidant capacity, Maillard reaction products and oxidative stress markers in canihua (Chenopodium pallidicaule). Journal of Cereal Science, 2012, 56 (2): 410-417. https://doi.org/10.1016/j.jcs.2012.04.013

Aroni G., Pinto M., Rojas W. Small-scale quinoa processing technology in the southern Altiplano of Bolivia. In: Biodiversity of Andean Grains: Balancing Market Potential and Sustainable Livelihoods (A. Giuliani, F. Hintermann, W. Rojas, S. Padulosi Eds.). Bioversity International and the Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences (HAFL). 2012, pp. 149-188. ISBN 978-92-9043-932-5. Available at: https://cgspace.cgiar.org/bitstream/handle/10568/105119/1635.pdf?sequence=3&isAllowed=y

Barros J., Munekata P.E.S., de Carvalho F.A.L., Pateiro M., Barba F.J., Domínguez R., Trindade M.A., Lorenzo J.M. Use of tiger nut (Cyperus esculentus L.) oil emulsion as animal fat replacement in beef burgers. Foods, 2020, 9(1): 44. https://doi.org/10.3390/foods9010044

Benzie I.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 1996, 239(1): 70-76. https://doi.org/10.1006/abio.1996.0292

Bligh E.G., Dyer W.Y. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917. https://doi.org/10.1139/o59-099

Bustos M.C., Ramos M.I., Pérez G.T., León A.E. Utilization of kañawa (Chenopodium pallidicaule Aellen) flour in pasta making. Journal of Chemistry, 2019, 2019(3): 4385045. https://doi.org/10.1155/2019/4385045

Callohuanca-Pariapaza M., Mamani-Mamani E., Mamani-Paredes J., Canaza-Cayo A. Perigonium color and the antioxidant capacity of cañihua (Chenopodium pallidicaule Aellen). Revista de Ciencias Agrícolas, 2021, 38(2): 99-110. https://doi.org/10.22267/rcia.213802.164

Chamberland J.P., Moon H.S. Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells. Familial Cancer, 2015, 14 (1): 25-30. https://doi.org/10.1007/s10689-014-9762-z

Domínguez R., Crecente S., Borrajo P., Agregan R., Lorenzo J.M. Effect of slaughter age on foal carcass traits and meat quality. Animal, 2015, 9(10): 1713-1720. https://doi.org/10.1017/S1751731115000671

Gomez Cahuata J.F., Rosas-Quina Y.E., Pachari Vera E. Cañihua (Chenopodium pallidicaule Aellen) a promising superfood in food industry: A review. Nutrition & Food Science, 2022, 52(6): 917-928. https://doi.org/10.1108/NFS-09-2021-0277

Gotor E., Bellon A., Polar V., Caracciolo F. Assessing the benefits of Andean crop diversity on farmers' livelihood: insights from a development programme in Bolivia and Peru. Journal of International Development, 2017, 29(7): 877-898. https://doi.org/10.1002/jid.3270

Huamaní F., Tapia M., Portales R., Doroteo V., Ruiz C., Rojas R. Proximate analysis, phenols, betalains, and antioxidant activities of three ecotypes of kañiwa (Chenopodium pallidicaule aellen) from Peru. Pharmacology Online Archive, 2020, 1(4): 229-236. Available at: https://pharmacologyonline.silae.it/files/archives/2020/vol1/PhOL_2020_1_A024_Huamani.pdf

IPGRI. Neglected and Underutilized Plant Species: Strategic Action Plan of the International Plant Genetic Resources Institute. International Plant Genetic Resources Institute, Rome, Italy, 2002, рр. 5-26, ISBN: 92-9043-529-1. Available at: https://cgspace.cgiar.org/bitstream/handle/10568/105263/Neglected_and_underutilized_plant_species_837.pdf?sequence=3&isAllowed=y

Karacor K., Cam M. Effects of oleic acid. Medical Science and Discovery, 2015, 2(1): 125-132. https://doi.org/10.36472/msd.v2i1.53

Kaur N., Chugh V., Gupta A.K. Essential fatty acids as functional components of foods- a review. Journal of Food Science and Technology, 2014, 51(10): 2289-2303. https://doi.org/10.1007/s13197-012-0677-0

Killian L. Food security & staple crops, IAEA Bulletin, 2012, 53-3(9): 11. Available at: https://www.iaea.org/sites/default/files/publications/magazines/bulletin/bull53-3/53305711111.pdf

Kostik V., Memeti S., Bauer B. Fatty acid composition of edible oils and fats. Journal of Hygienic Engineering and Design, 2013, 2(4): 112-116. Available at: https://keypublishing.org/jhed/wp-content/uploads/2020/10/06.-Abstract-Vesna-Kostik.pdf

Li L., Lietz G., Seal C.J. Phenolic, apparent antioxidant and nutritional composition of quinoa (Chenopodium quinoa Willd.) seeds. International Journal of Food Science & Technology, 2021, 56(7): 3245-3254. https://doi.org/10.1111/ijfs.14962

Marangoni F., Agostoni C., Borghi C., Catapano A.L., Cena H., Ghiselli A., La Vecchia C., Lercker G., Manzato E., Pirillo A., Riccardi G., Risé P., Visioli F., Poli A. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis, 2020, 292(1): 90-98. https://doi.org/10.1016/j.atherosclerosis.2019.11.018

Mérida-López J., Pérez S.J., Morales R., Purhagen J., Bergenståhl B., Rojas C.C. Comparison of the chemical composition of six canihua (Chenopodium pallidicaule) cultivars associated with growth habits and after dehulling. Foods, 2023, 12(8): 1734. https://doi.org/10.3390/foods12081734

Muflihah Y.M., Gollavelli G., Ling Y.C. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants, 2021, 10(10): 10101530. https://doi.org/10.3390/antiox10101530

Nazir F., Zahid H. Impact of unconventional Ω-3 sources on cognitive development: A nexus to explore for future brains. Food Science and Applied Biotechnology, 2023, 6(1): 151-166. https://doi.org/10.30721/fsab2023.v6.i1.232

Paez A.W., Eyzaguirre P. Canihua deserves to come back. LEISA magazine, 2004, 19(3): 11-13.

Park J.H., Lee Y.J., Kim Y.H., Yoon K.S. Antioxidant and antimicrobial activities of quinoa (Chenopodium quinoa Willd.) seeds cultivated in Korea. Preventive Nutrition and Food Science, 2017, 22(3): 195-202. https://doi.org/10.3746/pnf.2017.22.3.195

Peñarrieta J.M., Salluca T., Tejeda L., Alvarado J.A., Bergenståhl B. Changes in phenolic antioxidants during chuño production (traditional Andean freeze and sun-dried potato). Journal of Food Composition and Analysis, 2011, 24(4-5): 580-587. https://doi.org/10.1016/j.jfca.2010.10.006

Peñarrieta J.M., Alvarado J.A., Akesson B., Bergenståhl B. Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): An Andean pseudo cereal. Molecular Nutrition and Food Research, 2008, 52(6): 708-717. https://doi.org/10.1002/mnfr.200700189

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 1999, 26: 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3

Repo-Carrasco-Valencia R. Nutritional value and bioactive compounds in Andean ancient grains, Proceedings, 2020, 53(1), 1. https://doi.org/10.3390/proceedings2020053001

Repo-Carrasco-Valencia R., Hellström J.K., Pihlava J-M., Mattila P.H. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 2010, 120(1): 128-133. https://doi.org/10.1016/j.foodchem.2009.09.087

Rodríguez J.P., Aro M., Coarite M., Jacobsen S.-E., Ørting B., Sørensen M., Andreasen C. Seed shattering of cañahua (Chenopodium pallidicaule Aellen). Journal of Agronomy and Crop Science, 2017, 203(3): 254-267. https://doi.org/10.1111/jac.12192

Rodriguez J.P., Jacobsen S.E., Andreasen C., Sørensen M. (2020). Cañahua (Chenopodium pallidicaule): A promising new crop for arid areas. In: Emerging Research in Alternative Crops. Environment & Policy (A. Hirich, R. Choukr-Allah, R. Ragab Eds.), Environment & Policy, vol 58. Springer, Cham. 2020, рр. 221–243, Print ISBN: 978-3-319-90471-9, Online ISBN: 978-3-319-90472-6 https://doi.org/10.1007/978-3-319-90472-6_9.

Roy S., Rawat A.K., Sammi S.R., Devi U., Singh M., Gautam S., Yadav R.K., Rawat J.K., Singh L., Ansari M.N., Saeedan A.S., Pandey R., Kumar D., Kaithwas G. Alpha-linolenic acid stabilizes HIF-1 α and downregulates FASN to promote mitochondrial apoptosis for mammary gland chemoprevention. Oncotarget, 2017, 8(41): 70049-70071. https://doi.org/10.18632/oncotarget.19551

Salas-Valero L.M., Tapia-Blácido D.R., Menegalli F.C. Biofilms based on canihua flour (chenopodium pallidicaule): design and characterization. Química nova, 2014, 38 (1): 14-21. https://doi.org/10.5935/0100-4042.20140275

Sales-Campos H., Reis de Souza P., Crema Peghini B., Santana da Silva J., Ribeiro Cardoso C. An overview of the modulatory effects of oleic acid in health and disease. Mini Reviews in Medicinal Chemistry, 2013, 13(2): 201-210. https://doi.org/10.2174/138955713804805193

Szabó É., Marosvölgyi T., Szilágyi G., Korösi L., Schmidt J., Csepregi K., Márk L., Bóna Á. Correlations between total antioxidant capacity, polyphenol and fatty acid content of native grape seed and pomace of four different grape varieties in Hungary. Antioxidants, 2021, 10(7): 1101. https://doi.org/10.3390/antiox10071101

Tang Y., Li X., Chen P. X., Zhang B., Liu R., Hernandez M., Draves J., Marcone M.F., Tsao R. Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. Journal of Agricultural and Food Chemistry, 2016, 64(5): 1103-1110. https://doi.org/10.1021/acs.jafc.5b05414

Tao L. Oxidation of polyunsaturated fatty acids and its impact on food quality and human health. Advances in Food Technology and Nutritional Sciences, 2015, 1(6): 135-142. https://doi.org/10.17140/AFTNSOJ-1-123

Tejeda L., Alvarado J., Dębiec M., Peñarrieta J.M., Cardenas O., Alvarez M.T., Chawade A., Bergenståhl B. Relating genes in the biosynthesis of the polyphenol composition of Andean colored potato collection. Food Science and Nutrition, 2014, 2(1): 46-57. https://doi.org/10.1002/fsn3.69

Vargas-Ramella M., Pateiro M., Barba F.J., Franco D., Campagnol P.C.B., Munekata P.E.S., Tomasevic I., Domínguez R., Lorenzo J.M. Microencapsulation of healthier oils to enhance the physicochemical and nutritional properties of deer páté. LWT - Food Science and Technology, 2020, 125(5): 109223. https://doi.org/10.1016/j.lwt.2020.109223

Villa D., Russo L., Kerbab K., Landi M., Rastrelli L. Chemical and nutritional characterization of Chenopodium pallidicaule (cañihua) and Chenopodium quinoa (quinoa) seeds. Emirates Journal of Food and Agriculture, 2014, 26(7): 609-615. https://doi.org/10.9755/ejfa.v26i7.18187

Villa-Rodríguez J.A., Molina-Corral F.J., Ayala-Zavala J.F., Olivas G.I., González-Aguilar G.A. Effect of maturity stage on the content of fatty acids and antioxidant activity of “Hass” avocado. Food Research International, 2011, 44(5): 1231-1237. https://doi.org/10.1016/j.foodres.2010.11.012

Wu D., Liu J., Pang X., Wang S., Zhao J., Zhang X., Feng L. Palmitic acid exerts pro inflammatory effects on vascular smooth muscle cells by inducing the expression of C reactive protein, inducible nitric oxide synthase and tumor necrosis factor α. International Journal of Molecular Medicine, 2014, 34(6): 1706-1712. https://doi.org/10.3892/ijmm.2014.1942

Zhang B., Deng Z., Tang Y., Chen P., Liu R., Ramdath D.D., Liu Q., Hernandez M., Tsao, R. Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food Chemistry, 2014, 161(10): 296-304. https://doi.org/10.1016/j.foodchem.2014.04.014

Zhishen J., Mengcheng T., Jianming W. Determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 1999, 64(4): 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

How to Cite
LIMACHI, Jimena et al. Antioxidant potential and fatty acid profile of different canihua (Chenopodium pallidicaule) cultivars, raised in Bolivian Altiplano. Food Science and Applied Biotechnology, [S.l.], v. 6, n. 2, p. 383-394, oct. 2023. ISSN 2603-3380. Available at: <https://www.ijfsab.com/index.php/fsab/article/view/284>. Date accessed: 16 sep. 2024. doi: https://doi.org/10.30721/fsab2023.v6.i2.284.