Antioxidant potential and fatty acid profile of different canihua (Chenopodium pallidicaule) cultivars, raised in Bolivian Altiplano Antioxidant potential and fatty acid profile of canihua
Main Article Content
Abstract
Though widely used in the Andes in the ancient times, canihua has been considered a forgotten crop for a long time. Only lately, due to increasing demand in European countries, canihua reveals significantly growing market potential. With the current scarcity of research about the composition, nutritional and healthy profile, this study aimed to provide new information about the antioxidant capacity and the fatty acid profile of Bolivian canihua cultivars with different grain colour. Samples of 28 cultivars were used in the study, divided into three groups according to the grain colour– light brown, pink and dark brown. Total antioxidant capacity, content of the total phenols and flavonoids, as well as fatty acid composition were quantified for the groups. The cultivars with light brown grains displayed the strongest antioxidant potential and the highest content of phenols and flavonoids. Regardless of the colour, canihua cultivars were rich in saturated fatty acids, linoleic and oleic acid. The pink grained cultivars displayed the most favourable fatty acid profile, with lowest amount of C16:0. Correlation analysis showed that total phenols and flavonoids, as well as saturated and monounsaturated fatty acids had strong and positive contribution for the antioxidant potential of the canihua grains.
Article Details
References
Aroni G., Pinto M., Rojas W. Small-scale quinoa processing technology in the southern Altiplano of Bolivia. In: Biodiversity of Andean Grains: Balancing Market Potential and Sustainable Livelihoods (A. Giuliani, F. Hintermann, W. Rojas, S. Padulosi Eds.). Bioversity International and the Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences (HAFL). 2012, pp. 149-188. ISBN 978-92-9043-932-5. Available at: https://cgspace.cgiar.org/bitstream/handle/10568/105119/1635.pdf?sequence=3&isAllowed=y
Barros J., Munekata P.E.S., de Carvalho F.A.L., Pateiro M., Barba F.J., Domínguez R., Trindade M.A., Lorenzo J.M. Use of tiger nut (Cyperus esculentus L.) oil emulsion as animal fat replacement in beef burgers. Foods, 2020, 9(1): 44. https://doi.org/10.3390/foods9010044
Benzie I.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 1996, 239(1): 70-76. https://doi.org/10.1006/abio.1996.0292
Bligh E.G., Dyer W.Y. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917. https://doi.org/10.1139/o59-099
Bustos M.C., Ramos M.I., Pérez G.T., León A.E. Utilization of kañawa (Chenopodium pallidicaule Aellen) flour in pasta making. Journal of Chemistry, 2019, 2019(3): 4385045. https://doi.org/10.1155/2019/4385045
Callohuanca-Pariapaza M., Mamani-Mamani E., Mamani-Paredes J., Canaza-Cayo A. Perigonium color and the antioxidant capacity of cañihua (Chenopodium pallidicaule Aellen). Revista de Ciencias Agrícolas, 2021, 38(2): 99-110. https://doi.org/10.22267/rcia.213802.164
Chamberland J.P., Moon H.S. Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells. Familial Cancer, 2015, 14 (1): 25-30. https://doi.org/10.1007/s10689-014-9762-z
Domínguez R., Crecente S., Borrajo P., Agregan R., Lorenzo J.M. Effect of slaughter age on foal carcass traits and meat quality. Animal, 2015, 9(10): 1713-1720. https://doi.org/10.1017/S1751731115000671
Gomez Cahuata J.F., Rosas-Quina Y.E., Pachari Vera E. Cañihua (Chenopodium pallidicaule Aellen) a promising superfood in food industry: A review. Nutrition & Food Science, 2022, 52(6): 917-928. https://doi.org/10.1108/NFS-09-2021-0277
Gotor E., Bellon A., Polar V., Caracciolo F. Assessing the benefits of Andean crop diversity on farmers' livelihood: insights from a development programme in Bolivia and Peru. Journal of International Development, 2017, 29(7): 877-898. https://doi.org/10.1002/jid.3270
Huamaní F., Tapia M., Portales R., Doroteo V., Ruiz C., Rojas R. Proximate analysis, phenols, betalains, and antioxidant activities of three ecotypes of kañiwa (Chenopodium pallidicaule aellen) from Peru. Pharmacology Online Archive, 2020, 1(4): 229-236. Available at: https://pharmacologyonline.silae.it/files/archives/2020/vol1/PhOL_2020_1_A024_Huamani.pdf
IPGRI. Neglected and Underutilized Plant Species: Strategic Action Plan of the International Plant Genetic Resources Institute. International Plant Genetic Resources Institute, Rome, Italy, 2002, рр. 5-26, ISBN: 92-9043-529-1. Available at: https://cgspace.cgiar.org/bitstream/handle/10568/105263/Neglected_and_underutilized_plant_species_837.pdf?sequence=3&isAllowed=y
Karacor K., Cam M. Effects of oleic acid. Medical Science and Discovery, 2015, 2(1): 125-132. https://doi.org/10.36472/msd.v2i1.53
Kaur N., Chugh V., Gupta A.K. Essential fatty acids as functional components of foods- a review. Journal of Food Science and Technology, 2014, 51(10): 2289-2303. https://doi.org/10.1007/s13197-012-0677-0
Killian L. Food security & staple crops, IAEA Bulletin, 2012, 53-3(9): 11. Available at: https://www.iaea.org/sites/default/files/publications/magazines/bulletin/bull53-3/53305711111.pdf
Kostik V., Memeti S., Bauer B. Fatty acid composition of edible oils and fats. Journal of Hygienic Engineering and Design, 2013, 2(4): 112-116. Available at: https://keypublishing.org/jhed/wp-content/uploads/2020/10/06.-Abstract-Vesna-Kostik.pdf
Li L., Lietz G., Seal C.J. Phenolic, apparent antioxidant and nutritional composition of quinoa (Chenopodium quinoa Willd.) seeds. International Journal of Food Science & Technology, 2021, 56(7): 3245-3254. https://doi.org/10.1111/ijfs.14962
Marangoni F., Agostoni C., Borghi C., Catapano A.L., Cena H., Ghiselli A., La Vecchia C., Lercker G., Manzato E., Pirillo A., Riccardi G., Risé P., Visioli F., Poli A. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis, 2020, 292(1): 90-98. https://doi.org/10.1016/j.atherosclerosis.2019.11.018
Mérida-López J., Pérez S.J., Morales R., Purhagen J., Bergenståhl B., Rojas C.C. Comparison of the chemical composition of six canihua (Chenopodium pallidicaule) cultivars associated with growth habits and after dehulling. Foods, 2023, 12(8): 1734. https://doi.org/10.3390/foods12081734
Muflihah Y.M., Gollavelli G., Ling Y.C. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants, 2021, 10(10): 10101530. https://doi.org/10.3390/antiox10101530
Nazir F., Zahid H. Impact of unconventional Ω-3 sources on cognitive development: A nexus to explore for future brains. Food Science and Applied Biotechnology, 2023, 6(1): 151-166. https://doi.org/10.30721/fsab2023.v6.i1.232
Paez A.W., Eyzaguirre P. Canihua deserves to come back. LEISA magazine, 2004, 19(3): 11-13.
Park J.H., Lee Y.J., Kim Y.H., Yoon K.S. Antioxidant and antimicrobial activities of quinoa (Chenopodium quinoa Willd.) seeds cultivated in Korea. Preventive Nutrition and Food Science, 2017, 22(3): 195-202. https://doi.org/10.3746/pnf.2017.22.3.195
Peñarrieta J.M., Salluca T., Tejeda L., Alvarado J.A., Bergenståhl B. Changes in phenolic antioxidants during chuño production (traditional Andean freeze and sun-dried potato). Journal of Food Composition and Analysis, 2011, 24(4-5): 580-587. https://doi.org/10.1016/j.jfca.2010.10.006
Peñarrieta J.M., Alvarado J.A., Akesson B., Bergenståhl B. Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): An Andean pseudo cereal. Molecular Nutrition and Food Research, 2008, 52(6): 708-717. https://doi.org/10.1002/mnfr.200700189
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 1999, 26: 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
Repo-Carrasco-Valencia R. Nutritional value and bioactive compounds in Andean ancient grains, Proceedings, 2020, 53(1), 1. https://doi.org/10.3390/proceedings2020053001
Repo-Carrasco-Valencia R., Hellström J.K., Pihlava J-M., Mattila P.H. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 2010, 120(1): 128-133. https://doi.org/10.1016/j.foodchem.2009.09.087
Rodríguez J.P., Aro M., Coarite M., Jacobsen S.-E., Ørting B., Sørensen M., Andreasen C. Seed shattering of cañahua (Chenopodium pallidicaule Aellen). Journal of Agronomy and Crop Science, 2017, 203(3): 254-267. https://doi.org/10.1111/jac.12192
Rodriguez J.P., Jacobsen S.E., Andreasen C., Sørensen M. (2020). Cañahua (Chenopodium pallidicaule): A promising new crop for arid areas. In: Emerging Research in Alternative Crops. Environment & Policy (A. Hirich, R. Choukr-Allah, R. Ragab Eds.), Environment & Policy, vol 58. Springer, Cham. 2020, рр. 221–243, Print ISBN: 978-3-319-90471-9, Online ISBN: 978-3-319-90472-6 https://doi.org/10.1007/978-3-319-90472-6_9.
Roy S., Rawat A.K., Sammi S.R., Devi U., Singh M., Gautam S., Yadav R.K., Rawat J.K., Singh L., Ansari M.N., Saeedan A.S., Pandey R., Kumar D., Kaithwas G. Alpha-linolenic acid stabilizes HIF-1 α and downregulates FASN to promote mitochondrial apoptosis for mammary gland chemoprevention. Oncotarget, 2017, 8(41): 70049-70071. https://doi.org/10.18632/oncotarget.19551
Salas-Valero L.M., Tapia-Blácido D.R., Menegalli F.C. Biofilms based on canihua flour (chenopodium pallidicaule): design and characterization. Química nova, 2014, 38 (1): 14-21. https://doi.org/10.5935/0100-4042.20140275
Sales-Campos H., Reis de Souza P., Crema Peghini B., Santana da Silva J., Ribeiro Cardoso C. An overview of the modulatory effects of oleic acid in health and disease. Mini Reviews in Medicinal Chemistry, 2013, 13(2): 201-210. https://doi.org/10.2174/138955713804805193
Szabó É., Marosvölgyi T., Szilágyi G., Korösi L., Schmidt J., Csepregi K., Márk L., Bóna Á. Correlations between total antioxidant capacity, polyphenol and fatty acid content of native grape seed and pomace of four different grape varieties in Hungary. Antioxidants, 2021, 10(7): 1101. https://doi.org/10.3390/antiox10071101
Tang Y., Li X., Chen P. X., Zhang B., Liu R., Hernandez M., Draves J., Marcone M.F., Tsao R. Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. Journal of Agricultural and Food Chemistry, 2016, 64(5): 1103-1110. https://doi.org/10.1021/acs.jafc.5b05414
Tao L. Oxidation of polyunsaturated fatty acids and its impact on food quality and human health. Advances in Food Technology and Nutritional Sciences, 2015, 1(6): 135-142. https://doi.org/10.17140/AFTNSOJ-1-123
Tejeda L., Alvarado J., Dębiec M., Peñarrieta J.M., Cardenas O., Alvarez M.T., Chawade A., Bergenståhl B. Relating genes in the biosynthesis of the polyphenol composition of Andean colored potato collection. Food Science and Nutrition, 2014, 2(1): 46-57. https://doi.org/10.1002/fsn3.69
Vargas-Ramella M., Pateiro M., Barba F.J., Franco D., Campagnol P.C.B., Munekata P.E.S., Tomasevic I., Domínguez R., Lorenzo J.M. Microencapsulation of healthier oils to enhance the physicochemical and nutritional properties of deer páté. LWT - Food Science and Technology, 2020, 125(5): 109223. https://doi.org/10.1016/j.lwt.2020.109223
Villa D., Russo L., Kerbab K., Landi M., Rastrelli L. Chemical and nutritional characterization of Chenopodium pallidicaule (cañihua) and Chenopodium quinoa (quinoa) seeds. Emirates Journal of Food and Agriculture, 2014, 26(7): 609-615. https://doi.org/10.9755/ejfa.v26i7.18187
Villa-Rodríguez J.A., Molina-Corral F.J., Ayala-Zavala J.F., Olivas G.I., González-Aguilar G.A. Effect of maturity stage on the content of fatty acids and antioxidant activity of “Hass” avocado. Food Research International, 2011, 44(5): 1231-1237. https://doi.org/10.1016/j.foodres.2010.11.012
Wu D., Liu J., Pang X., Wang S., Zhao J., Zhang X., Feng L. Palmitic acid exerts pro inflammatory effects on vascular smooth muscle cells by inducing the expression of C reactive protein, inducible nitric oxide synthase and tumor necrosis factor α. International Journal of Molecular Medicine, 2014, 34(6): 1706-1712. https://doi.org/10.3892/ijmm.2014.1942
Zhang B., Deng Z., Tang Y., Chen P., Liu R., Ramdath D.D., Liu Q., Hernandez M., Tsao, R. Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food Chemistry, 2014, 161(10): 296-304. https://doi.org/10.1016/j.foodchem.2014.04.014
Zhishen J., Mengcheng T., Jianming W. Determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 1999, 64(4): 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright Licensing Agency
Institutions based in the EU with a valid photocopying and/or digital license with the Copyright Licensing Agency may copy excerpts from books and journals published by the Academic Publishing House of the UFT Plovdiv under the terms of their license.
Copyright Clearance Center
Institutions based in the US with a valid photocopying and/or digital license with the Copyright Clearance Center may copy excerpts from books and journals published by the Academic Publishing House of the UFT Plovdiv under the terms of their license.
Other Territories: Please contact your local reproduction rights organization.
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102