Comparative evaluation antimicrobial and antitumor activities of natural colostrum peptide and its synthesized analogue Comparative evaluation antimicrobial and antitumor activities...
Main Article Content
Abstract
Antimicrobial and antitumor activities of bovine colostrum peptide and its synthesized analogue were carried out. The peptide was produced by standard solid phase synthesis followed by purification by high-performance liquid chromatography. Peptide purity and primary structure were confirmed by MALDI and ESI MS. It was found that the synthesized peptide with ACSAG amino acid sequence and a molecular weight of 430.2332 was an analogue of the natural one. The synthesized peptide had a high hydrophilic value and isoelectric point of 5.22. The obtained data theoretically confirm that the studied peptide belongs to a class of antimicrobial peptides. It was experimentally established that both natural and synthesized peptides had antimicrobial activity against E. coli ATCC 25922, P. aeruginosa 27/99 and B. subtilis АТСС 6633, antifungal and anti-tumor activity against C6 cells. After 48 h there was a significant 50% decrease in the tumor cells population at the concentration of the natural peptide of 365.5±3.8 mg.ml-1, and the synthesized peptide concentration of 312.7±3.5 mg.ml-1 in the nutrient medium. This synthesized peptide has a greater biological activity and can be effective at lower concentrations, than the natural one.
Article Details
References
Andreu D., Rivas L. Animal antimicrobial peptides: an overview. Biopolymers, 1998, 47(6): 415-433. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
Angelova A., Drechsler M., Garamus V.M., Angelov B. Pep-lipid cubosomes and vesicles compartmentalized by micelles from self-assembly of multiple neuroprotective building blocks including a large peptide hormone pacapdha. ChemNanoMat, 2019, 5(11): 1381-1389. https://doi.org/10.1002/cnma.201900548
Apostolopoulos V., Bojarska J., Chai T., Elnagdy S., aczmarek K.K., Matsoukas J., New R., Parang K., Lopez O.P., Parhiz H., Perera C.O., Pickholz M., Remko M., Saviano M., Skwarczynski M., Tang Y., Wolf W.M., Yoshiya T., Zabrocki J., Zielenkiewicz P., AlKha-zindar M., Barriga V., Kelaidonis K., Sarasia E.M., Toth I. A global review on short peptides: Frontiers and perspectives. Molecules, 2021, 26(2): 430. https://doi.org/10.3390/molecules26020430
Baek M.H., Kamiya M., Kushibiki T., Nakazumi T., Tomisawa S., Abe C. Lipopolysaccharide-bound structure of the antimi-crobial peptide cecropin P1 determined by nuclear magnetic resonance spectroscopy. Journal of Peptide Science, 2016, 22(4): 214-221. https://doi.org/10.1002/psc.2865
Bechinger B., Gorr S. Antimicrobial peptides: Mechanisms of action and resistance. Journal of Dental Research, 2017, 96(3): 254-260. https://doi.org/10.1177/0022034516679973
Cheever M.A. Provenge (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clinical Cancer Research, 2011, 7(11): 3520-3526. https://doi.org/10.1158/1078-0432.CCR-10-3126
Dennison S.R., Morton L.H., Harris F., Phoenix D.A. Low pH enhances the action of maximin H5 against Staphylococcus aureus and helps mediate lysylated phosphatidylglycerol-induced resistance. Biochemistry, 2016, 55(27): 3735-3751. https://doi.org/10.1021/acs.biochem.6b00101
Hilf N., Kuttruff-Coqui S., Frenzel K, Bukur V., Stevanović S., Gouttefangeas C. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature, 2019, 565(7738): 240-245. https://doi.org/10.1038/s41586-018-0810-y
Hiltunen T., Virta M., Laine A.L. Antibiotic resistance in the wild: an eco-evolutionary perspective. Philosophical Transactions of the Royal Society B, 2017, 372(1712): 20160039. https://doi.org/10.1098/rstb.2016.0039
Jenssen H., Hamill P., Hancock R. Peptide antimicrobial agents. Clinical Microbiology Reviews, 2016, 19(3): 491-511. https://doi.org/10.1128/CMR.00056-05
Kang H.K., Kim C., Seo C.H., Park Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. Journal of Microbiology, 2017, 55(1): 1-12. https://doi.org/10.1007/s12275-017-6452-1
Kapustian A., Cherno N., Kovalenko A., Naumenko K. Products of metabolism and processing of lactic acid bacteria and bifidobacteria as functional ingredients Food Science and Applied Biotechnology, 2018, 1(1): 47-55 https://doi.org/10.30721/fsab2018.v1.i1.13
Kozlowski L.P. Proteome-pI: proteome isoelectric point database. Nucleic Acids Research, 2017, 45(D1): D1112-D1116. https://doi.org/10.1093/nar/gkw978
Kumar M., Singh R., Meena A., Patidar B.S., Prasad R., Chhabra S.K., Bansal S. An improved 2-dimensional gel electrophoresis method for resolving human erythrocyte membrane proteins. Proteomics Insights, 2017, 8(1): 1-7. https://doi.org/10.1177/1178641817700880
Lee A.C.L., Harris J.L., Khanna K.K., Hong J.H. A comprehensive review on current advances in peptide drug develop ment and design. International Journal of Molecular Sciences, 2019, 20(10): 2383. https://doi.org/10.3390/ijms20102383
Liu Y.Q., Zhen-Jun S., Chong W., Shi-Jie L., Yu-Zhi L. Purification of a novel antibacterial short peptide in earthworm Eisenia foetida. Acta Biochimica et Biophysica Sinica. 2004, 36(4): 297-302. https://doi.org/10.1093/abbs/36.4.297
Lorenz I., Martin C., Hoffenberg S., SK Phogat, SM Kaminsky. Design of hydrophilic, helical peptides that mimic the 4E10 epitope of HIV-1 gp41. Retrovirology, 2009, 6(Suppl.3): 180. https://doi.org/10.1186/1742-4690-6-S3-P180
Maijaroen S., Jangpromma N., Daduang J., Klaynongsruang S. KT2 and RT2 modifed antimicrobial peptides derived from Crocodylus siamensis Leucrocin I show activity against human colon cancer HCT-116 cells. Environmental Toxicology and Pharmacology, 2018, 62(9): 164-176. https://doi.org/10.1016/j.etap.2018.07.007
Maraming P., Klaynongsruang S., Boonsiri P., Peng S.F., Daduang S., Leelayuwat C., Pientong C., Chung J.-G., Daduang J. The cationic cell-penetrating KT2 peptide promotes cell membrane defects and apoptosis with autophagy inhibition in human HCT 116 colon cancer cells. Journal of Cellular Physiology, 2019, 234(12): 22116-22129. https://doi.org/10.1002/jcp.28774
Martin V., Egelund P.H.G., Johansson H., Thordal Le Quement S., Wojcik F., Sejer Pedersen D. Greening the synthesis of peptide therapeutics: An industrial perspective. RSC Advances, 2020, 10(69): 42457-42492. https://doi.org/10.1039/d0ra07204d
Massarelli E., William W., Johnson F., Kies M., Ferrarotto R., Guo M. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16–related cancer: A phase 2 clinical trial. JAMA Oncology, 2019, 5(1): 67-73. https://doi.org/10.1001/jamaoncol.2018.4051
Miller A., Matera-Witkiewicz A., Mikolajczyk A., Watly J., Wilcox D., Witkowska D., Rowi´nska-Zyrek M. Zn-enhanced Asp-rich antimicrobial peptides: N-terminal coordination by Zn(II) and Cu(II), which distinguishes Cu(II) binding to diferent peptides. International Journal of Molecular Sciences, 2021, 22(13): 6971. https://doi.org/10.3390/ijms22136971
Mohammed I., Said D.G., Dua H.S. Human antimicrobial peptides in ocular surface defense. Progress in Retinal and Eye Research, 2017, 61(11): 1-22. https://doi.org/10.1016/j.preteyeres.2017.03.004
Mwangi J., Hao X., Lai R., Zhang Z.Y. Antimicrobial peptides: new hope in the war against multidrug resistance. Zoological Research, 2019, 40(6): 488-505. https://doi.org/10.24272/j.issn.2095-8137.2019.062
Naydenova N. Bioactive components of donkey milk. Food Science and Applied Biotechnology, 2022, 5(2): 219-223.https://doi.org/10.30721/fsab2022.v5.i2.212
Nguyen L. The expanding scope of antimicrobial peptide structures and their modes of action. Trends in Biotechnology, 2011, 29(9): 464-472. https://doi.org/10.1016/j.tibtech.2011.05.001
Pace C.N., Grimsley G.R., Scholtz J.M. Protein ionizable groups: pK values and their contribution to protein stability and solubility. Journal of Biological Chemistry, 2009, 284(20): 13285-13289. https://doi.org/10.1074/jbc.R800080200
Prenner E.J., Kiricsi M., Jelokhani-Niaraki M., Lewis R.N., Hodges R.S., McElhaney R.N. Structure-activity relationships of diastereomeric lysine ring size analogs of the antimicrobial peptide gramicidin S: Mechanism of action and discrimination between bacterial and animal cell membranes. Journal of Biological Chemistry, 2005, 2(80): 2002-2011. https://doi.org/10.1074/jbc.M406509200
Rajagopal M., Walker S. Envelope structures of gram-positive bacteria. Current Top in Microbiology and Immunology, 2017, 404(2): 1-44. https://doi.org/10.1007/82_2015_5021
Ringstad L., Andersson Nordahl E., Schmidtchen A., Malmsten M. Composition effect on peptide interaction with lipids and bacteria: Variants of C3a peptide CNY21. Biophysical Journal. 2007, 92(1): 87-98. https://doi.org/10.1529/biophysj.106.088161
Rini B.I., Stenzl R., Zdrojowy M., Kogan M., Shkolnik S. Oudard. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. The Lancet. Oncology, 2016, 17(11): 1599-1611. https://doi.org/10.1016/S1470-2045(16)30408-9
Tossi A., Sandri L., Giangaspero A. Amphipathic, α-helical antimicrobial peptides. i Science, 2000, 55(6): 4-30. https://doi.org/10.1016/j.isci.2024.110404
Wang J., Dou X., Song J., Lyu Y., Zhu X., Xu L., Weizhong L., Anshan S. Antimicrobial peptides: promising alternatives in the post feeding antibiotic era. Medicinal Research Reviews, 2019, 39(3): 831-859. https://doi.org/10.1002/med.21542
Wang X., Sun Y., Wang F., You L., Cao Y., Tang R., Cui X. A novel endogenous antimicrobial peptide CAMP 211–225 derived from casein in human milk. Food and Function, 2020, 11(3): 2291-2298. https://doi.org/10.1039/c9fo02813g
Yasir M., Duncan M., Willcox P., Dutta D. Action of antimicrobial peptides against bacterial biofilms. 2018, Materials, 11(12): 2468. https://doi.org/10.3390/ma11122468
Zabłocka A., Sokołowska A., Macała J., Bartoszewska M., Mitkiewicz M., Janusz M., Polanowski A. Colostral proline-rich polypeptide complexes. Comparative study of the antioxidant properties, cytokineinducing activity, and nitric oxide release of preparations produced by a laboratory and a large-scale method. International Journal of Peptide Research and Therapeutics, 2020, 26(2): 685-694. https://doi.org/10.1007/s10989-019-09876-6
Zhang C., Yang M., Ericsson A.C. Antimicrobial peptides: potential application in liver cancer. Frontiers in Microbioly, 2019, 10(6): 1257. https://doi.org/10.3389/fmicb.2019.01257
Zhang Y., Liu S., Li S., Cheng Y., Nie L., Wang G. Novel short antimicrobial peptide isolated from Xenopus laevis skin. Journal of Peptide Science, 2017, 23(5): 403. https://doi.org/10.1002/psc.2990

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Open access articles are distributed under the terms and conditions of the Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0) license:
https://creativecommons.org/licenses/by-sa/4.0
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102