Conjugation and encapsulation of L-asparaginase: an effective strategy for augmenting enzyme potential for anticancer activity Conjugation and encapsulation of L-asparaginase:...
Main Article Content
Abstract
Extensive research is being conducted for cancer treatment but eradicating cancer cells is a great challenge till date due to lack of understanding regarding cancer development and manifestation in the systemic and local environment. L-asparaginase (ASNase), a well-known drug since decades for treatment of paediatric Acute Lymphoblastic Leukemia (ALL) is an enzyme that restricts the ability of the non-essential amino acid asparagine for tumor progression by breaking it down to aspartic acid and ammonia thereby depriving tumor cells from their key nutrient for survival. Though the enzyme has gained immense interest in clinical and scientific community the major challenge posed by the use of this specific enzyme in antilymphoproliferative studies is the induction of several immunogenic responses. In this review, we have highlighted the different encapsulation techniques using emerging carrier molecules to increase enzyme efficacy with a minimum negative impact on the living cells. Further we have highlighted the recent approach in which encapsulation of the enzyme using diverse nanoparticles which have proved its effectiveness in rendering target-specific action along with reduced immunogenicity, improved half-life, thermal stability and better enzyme activity.
Article Details
References
Agrawal S., Sharma I., Prajapati B.P., Suryawanshi R.K., Kango N. Catalytic characteristics and application of ASNase immobilized on aluminium oxide pellets. International Journal of Biological Macromolecules, 2018,114(8): 504-511. https://doi.org/10.1016/j.ijbiomac.2018.03.081
Ahmadpour S., Hosseinimehr S. PASylation as a powerful technology for improving the pharmacokinetic properties of biopharmaceuticals. Current Drug Delivery. 2018, 15(3): 331-341. https://doi.org/10.2174/1567201814666171120122352
Armstrong J.K. Antibody against poly (ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer, 2007, 110(1):103-111. https://doi.org/10.1002/cncr.22739
Asselin B., Rizzari C. Asparaginase pharmacokinetics and implications of therapeutic drug monitoring. Leukemia & Lymphoma. 2015, 56(8): 2273-2280. https://doi.org/10.3109/10428194.2014.1003056
Ates B., Ulu A., Köytepe S., Noma S.A.A., Kolat V.S., Izgi T. Magnetic-propelled Fe3O4–chitosan carriers enhance ASNase catalytic activity: a promising strategy for enzyme immobilization. RSC Advances. 2018, 8(63): 36063-36075. https://doi.org/10.1039/C8RA06346J
Avramis V.I., Avramis E.V., Hunter W., Long M.C. Immunogenicity of native or PEGylated E. coli and Erwinia asparaginases assessed by ELISA and surface plasmon resonance (SPR-biacore) assays of IgG antibodies (Ab) in sera from patients with acute lymphoblastic leukemia (ALL). Anticancer Research. 2009, 29(1): 299-302. Available at: https://ar.iiarjournals.org/content/anticanres/29/1/299.full.pdf
Avramis V.I., Sencer S., Periclou A.P., Sather H., Bostrom B.C., Cohen L.J., Ettinger A.G., Ettinger L.J., Franklin J., Gaynon P.S., Hilden J.M., Lange B., Majlessipour F., Mathew P., Needle M., Neglia J., Reaman G., Holcenberg J.S. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children's Cancer Group study. Blood, 2002, 99(6): 1986-1994. https://doi.org/10.1182/blood.v99.6.1986
Avramis V.I., Tiwari P.N. Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. International Journal of Nanomedicine, 2006, 1(3): 241-254. Available at: https://www.dovepress.com/asparaginase-native-asnase-or-pegylated-asnase-in-the-treatment-of-acu-peer-reviewed-fulltext-article-IJN
Bahraman F., Alemzadeh I. Optimization of ASNase immobilization onto calcium alginate beads. Chemical Engineering Communications, 2017, 204(2): 216-220. https://doi.org/10.1080/00986445.2015.1065821
Bailon P., Berthold W. Polyethylene glycol-conjugated pharmaceutical proteins. Pharmaceutical Science & Technology Today, 1998, 1(8): 352-356. https://doi.org/10.1016/S1461-5347(98)00086-8
Baran E.T., Hasirci V.J. In vivo half-life of nanoencapsulated ASNase. Journal of Materials Science: Materials in Medicine, 2002, 13(12): 1113-1121. https://doi.org/10.1023/a:1021125617828
Barros R.A.M., Cristóvão R.O., Carabineiro S.A.C., Neves M.C., Freire M.G., Faria J.L., Santos-Ebinuma V.C., Tavares A.P.M., Silva C.G. Immobilization and characterization of L-asparaginase over carbon xerogels. BioTech (Basel), 2022,11(2): 10. https://doi.org/10.3390/biotech11020010
Blackman L.D., Varlas S., Arno M.C., Houston Z.H., Fletcher N.L., Thurecht K.J., Hasan M., Gibson M.I., O’Reilly R.K. Confinement of therapeutic enzymes in selectively permeable polymer vesicles by polymerization-induced self-assembly (PISA) reduces antibody binding and proteolytic susceptibility. ACS Central Science, 2018, 4(6): 718-723. https://doi.org/10.1021/acscentsci.8b00168
Bodmer M., Sulz M., Stadlmann S., Droll A., Terracciano L., Krähenbühl S. Fatal liver failure in an adult patient with acute lymphoblastic leukemia following treatment with ASNase. Digestion, 2006, 74(1): 28-32. https://doi.org/10.1159/000095827
Boos J., Werber G., Ahlke E., Schulze-Westhoff P., Nowak-Göttl U., Würthwein G., Verspohl E.J., Ritter J., Jürgens H. Monitoring of asparaginase activity and asparagine levels in children on different asparaginase preparations. European Journal of Cancer. 1996, 32(9): 1544-1550. https://doi.org/10.1016/0959-8049(96)00131-1
Bowen S., Tare N., Inoue T., Yamasaki M., Okabe M., Horii I., Eliason J.F. Relationship between molecular mass and duration of activity of polyethylene glycol conjugated granulocyte colony-stimulating factor mutein. Experimental Hematology, 1999, 27(3): 425-432. https://doi.org/10.1016/s0301-472x(98)00051-4
Broome J.D. Evidence that the ASNase of guinea pig serum is responsible for its antilymphoma effects: I. Properties of the ASNase of guinea pig serum in relation to those of the antilymphoma substance. Journal of Experimental Medicine, 1963, 118(1): 99-120. https://doi.org/10.1084/jem.118.1.99
Brumano L.P., da Silva F.V.S., Costa-Silva T.A., Apolinário A.C., Santos J.H.P.M., Kleingesinds E.K., Monteiro G., Rangel-Yagui C.O., Benyahia B., Pessoa Junior A.Development of ASNasebiobetters: current research status and review of the desirable quality profiles. Frontiers in Bioengineering and Biotechnology, 2019, 6(1): 212. https://doi.org/10.3389/fbioe.2018.00212
Chiu M., Taurino G., Bianchi M.G., Kilberg M.S., Bussolati O. Asparagine synthetase in cancer: beyond acute lymphoblastic leukemia. Frontiers in Oncology, 2019, 9(1): 01480. https://doi.org/10.3389/fonc.2019.01480
Chow Y.., Ting A.S.Y. Endophytic ASNase-producing fungi from plants associated with anticancer properties. Journal of Advanced Research, 2015, 6(6): 869-876. https://doi.org/10.1016/j.jare.2014.07.005
Debnath S., Kumar R.S., Babu M.N. Ionotropic gelation - a novel method to prepare chitosan nanoparticles. Research Journal of Pharmacy and Technology, 2011, 4(4): 492-495. Available at: https://rjptonline.org/HTMLPaper.aspx?Journal=Research+Journal+of+Pharmacy+and+Technology%3bPID%3d2011-4-4-1
Duval M., Suciu S., Ferster A., Rialland X., Nelken B., Lutz P., Benoit Y., Robert A., Manel A.-M., Vilmer E., Otten J., Philippe N. Comparison of Escherichia coli–asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer-Children's Leukemia Group phase 3 trial. Blood, 2002, 99(8): 2734-2739. https://doi.org/10.1182/blood.v99.8.2734
Fernandes A.I., Gregoriadis G. Polysialylated asparaginase: preparation, activity and pharmacokinetics. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1997, 1341(1): 26-34. https://doi.org/10.1016/s0167-4838(97)00056-3
Fromenty B., Pessayre D. Impaired mitochondrial function in microvesicular steatosis effects of drugs, ethanol, hormones and cytokines. Journal of Hepatology, 1997, 26(Suppl. 2): 43-53. https://doi.org/10.1016/s0168-8278(97)80496-5
Fromenty B., Pessayre D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacology & Therapeutics, 1995, 67(1): 101-154. https://doi.org/10.1016/0163-7258(95)00012-6
Gabizon A., Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Drugs, 1997, 54(4): 15-21. https://doi.org/10.2165/00003495-199700544-00005
Garay R.P., El-Gewely R., Armstrong J.K., Garratty G., Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opinion on Drug Delivery, 9(11): 1319-1323. https://doi.org/10.1517/17425247.2012.720969
Ghosh S., Chaganti S.R., Prakasham R.S. Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme ASNase. Journal of Molecular Catalysis B: Enzymatic, 2012, 74(1-2): 132-137. https://doi.org/10.1016/j.molcatb.2011.09.009
Golestaneh D., Varshosaz J. Enhancement in biological activity of L-asparginase by its conjugation on silica nanoparticles. Recent Patents on Nanotechnology, 2018, 12(1): 70-82. https://doi.org/10.2174/0929867324666170823143634
Göpel W., Schnetzke U., Hochhaus A., Scholl S. Functional acute liver failure after treatment with pegylated asparaginase in a patient with acute lymphoblastic leukemia: potential impact of plasmapheresis. Annals of Hematology, 2016, 95(11): 1899-1901. https://doi.org/10.1007/s00277-016-2773-0
Harrington K.J., Mohammadtaghi S., Uster P.S., Glass D., Peters A.M., Vile R.G., Stewart J.S.W. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled PEGylated liposomes. Clinical Cancer Research, 2001, 7(2): 243-254. Available at: https://aacrjournals.org/clincancerres/article/7/2/243/288363/Effective-Targeting-of-Solid-Tumors-in-Patients
Hashimoto Y., Shimizu T., Mima Y., Lila A.S.A., Ishida T., Kiwada H. Generation, characterization and in vivo biological activity of two distinct monoclonal anti-PEG IgMs. Toxicology and Applied Pharmacology, 2014, 277(1): 30-38. https://doi.org/10.1016/j.taap.2014.03.002
Heitink-Pollé K.M., Prinsen B.H., de Koning T.J., van Hasselt P.M., Bierings M.B. High incidence of symptomatic hyperammonemia in children with acute lymphoblastic leukemia receiving PEGylated asparaginase. JIMD Reports - Case and Research Reports, 2012, 7(4): 103-108. https://doi.org/10.1007/8904_2012_156
Heo Y.A., Syed Y.Y., Keam S.J. Pegaspargase: A review in acute lymphoblastic leukaemia. Drugs, 2019, 79(7): 767-777. https://doi.org/10.1007/s40265-019-01120-1
Hettmer S., Schinzel A.C., Tchessalova D., Schneider M., Parker C.L., Bronson R.T, Richards N.G.J., Hahn W.C., Wagers A.J. Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma. eLife, 2015, 4(10): e09436. https://doi.org/10.7554/eLife.09436
Jaccard A., Petit B., Girault S., Suarez F., Gressin R., Zini J.-M., Coiteux V., Larroche C., Devidas A., Thiéblemont C., Gaulard P., Marin B., Gachard N., Bordessoule D., Hermine O. ASNase-based treatment of 15 western patients with extranodal NK/T-cell lymphoma and leukemia and a review of the literature. Annals of Oncology, 2009, 20(1): 110-116. https://doi.org/10.1093/annonc/mdn542
Jean-François J., Fortier G. Immobilization of L‐asparaginase into a biocompatible poly (ethylene glycol) ‐ albumin hydrogel: I: Preparation and in vitro characterization. Biotechnology and Applied Biochemistry, 1996, 23(3): 221-226. https://doi.org/10.1111/j.1470-8744.1996.tb00379.x or https://iubmb.onlinelibrary.wiley.com/doi/10.1111/j.1470-8744.1996.tb00379.x
Jevševar S., Kunstelj M., Porekar V.G. PEGylation of therapeutic proteins. Biotechnology Journal, 2010, 5(1): 113-128. https://doi.org/10.1002/biot.200900218
Karsakevich A.S., Vina I.A., Liduma G.Y. Immobilization of the enzyme E. coli ASNase on a water-soluble copolymer of vinylpyrrolidone and acrolein. Chemistry of Natural Compounds, 1988, 24(4): 477-480. https://doi.org/10.1007/BF00598537
Katas H., Raja M.A.G., Lam K.L. Development of chitosan nanoparticles as a stable drug delivery system for protein/siRNA. International Journal of Biomaterials, 2013, 2013(9): 146320. https://doi.org/10.1155/2013/146320
Kidd J.G. Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum: I. course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. Journal of Experimental Medicine, 1953, 98(6): 565-582. https://doi.org/10.1084/jem.98.6.565
Kolev N. Natural antioxidants - an alternative for reduction of nitrites in cooked meat products. Food Science and Applied Biotechnology, 2022, 5(1): 64-76. https://doi.org/10.30721/fsab2022.v5.i1.167
Kozlowski A., Harris J.M. Improvements in protein PEGylation: PEGylated interferons for treatment of hepatitis C. Journal of Controlled Release, 2001, 72(1-3): 217-224. https://doi.org/10.1016/s0168-3659(01)00277-2
Konhäuser M., Kannaujiya V.K., Steiert E., Schwickert K., Schirmeister T., Wich P.R. Co-encapsulation of l-asparaginase and etoposide in dextran nanoparticles for synergistic effect in chronic myeloid leukemia cells, International Journal of Pharmaceutics, 2022, 622(6): 121796. https://doi.org/10.1016/j.ijpharm.2022.121796
Kotzia G.A., Lappa K., Labrou N.E. Tailoring structure-function properties of Lasparaginase: engineering resistance to trypsin cleavage. Biochemical Journal, 2007, 404(2): 337-343. https://doi.org/10.1042/BJ20061708
Krall A.S., Xu S., Graeber T.G., Braas D., Christofk H. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nature Communications, 2016, 7(1): 1-13. https://doi.org/10.1038/ncomms11457
Lanvers-Kaminsky C., Niemann A., Eveslage M., Beck J., Köhnke T., Martin S., de Wit M., Spriewald B., Hauspurg H., Hoelzer D., Boos J., Gökbuget N. Asparaginase activities during intensified treatment with pegylated E. coli asparaginase in adults with newly-diagnosed acute lymphoblastic leukemia. Leukemia & Lymphoma, 2020, 61(1): 138-145. https://doi.org/10.1080/10428194.2019.1658099
Lanvers-Kaminsky C. Asparaginase pharmacology: challenges still to be faced. Cancer Chemotherapy and Pharmacology, 2017, 79(3): 439-450. https://doi.org/10.1007/s00280-016-3236-y
Liu C., Kawedia J.D., Cheng C., Pei D., Fernandez C.A., Cai X., Crews K.R., Kaste S.C., Panetta J.C., Bowman W.P., Jeha S., Sandlund J.T., Evans W.E., Pui C.-H., Relling M.V. Clinical utility and implications of asparaginase antibodies in acute lymphoblastic leukemia. Leukemia, 2012, 26(11): 2303-2309. https://doi.org/10.1038/leu.2012.102
Maysa E.M., Amira M., Gamal E., Sanaa T., Sayed E. Production, immobilization and anti-tumor activity of ASNase of Bacillus sp R36. Journal of American Science, 2010, 6(8): 157-165. Available at: https://www.jofamericanscience.org/journals/am-sci/am0608/21_2791_am0608_157_165.pdf
Mehvar R. Modulation of the pharmacokinetics and pharmacodynamics of proteins by polyethylene glycol conjugation. Journal of Pharmaceutical Sciences, 2000, 3(1): 125-136. Available at: https://sites.ualberta.ca/~csps/JPPS3(1)/R.Mehvar/Glycol.htm
Melik-Nubarov N.S., Grozdova I.D., Lomakina G.Y., Pokrovskaya M.V., Pokrovski V.S., Aleksandrova S.S., Abakumova O.Yu., Podobed O.V., Grishin D.V., Sokolov N.N. PEGylated recombinant ASNase from Erwinia carotovora: Production, properties, and potential applications. Applied Biochemistry and Microbiology, 2017, 53(2): 165-172. https://doi.org/10.1134/S0003683817020119
Meneguetti G.P., Santos J.H.P.M., Obreque K.M.T., Barbosa C.M.V., Monteiro G., Farsky S.H.P., de Oliveira A.M., Angeli C.B., Palmisano G., Ventura S.P.M., Pessoa-Junior A., Rangel-Yagui C.O. Novel site-specific PEGylated ASNase. PLoS One, 2019, 14(2): e0211951. https://doi.org/10.1371/journal.pone.0211951
Milla P., Dosio F., Cattel L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Current Drug Metabolism. 2012, 13(1): 105-119. https://doi.org/10.2174/138920012798356934
Mishra P., Nayak B., Dey R.K. PEGylation in anti-cancer therapy: An overview. Asian Journal of Pharmaceutical Sciences, 2016, 11(3): 337-348. https://doi.org/10.1016/j.ajps.2015.08.011
Molineux G., Kinstler O., Briddell B., Hartley C., McElroy P., Kerzic P., W. Sutherland, G. Stoney, B. Kern, Fletcher F.A., Cohen A., Korach E., Ulich T., McNiece I., Lockbaum P., Miller-Messana M.A., Gardner S., Hunt T., Schwab G. A new form of Filgrastim with sustained duration in vivo and enhanced ability to mobilize PBPC in both mice and humans. Experimental Hematology, 1999, 27(12): 1724-1734. https://doi.org/10.1016/s0301-472x(99)00112-5
Molineux G. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treatment Reviews, 2002, 28(Suppl. 1): 13-16. https://doi.org/10.1016/S0305-7372(02)80004-4
Mori T., Tosa T., Chibata I. Preparation and properties of asparaginase entrapped in the lattice of polyacrylamide gel. Cancer Research, 1974, 34(11): 3066-3068. Available at: https://aacrjournals.org/cancerres/article/34/11/3066/479781/Preparation-and-Properties-of-Asparaginase
Nadumane V.K., Venkatachalam P., Gajaraj B. Chapter 19 - Aspergillus Applications in Cancer Research. In: New and Future Developments in Microbial Biotechnology and Bioengineering. Aspergillus System Properties and Applications (V.K. Gupta Ed.), Elsevier B.V. 2016, pp. 243-255. ISBN: 978-0-444-63505-1 https://doi.org/10.1016/B978-0-444-63505-1.00020-8
Narta U.K., Kanwar S.S., Azmi W. Pharmacological and clinical evaluation of ASNase in the treatment of leukemia. Critical Reviews in Oncology/Hematology, 2007, 61(3): 208-221. https://doi.org/10.1016/j.critrevonc.2006.07.009
Noma S.A.A., Acet O., Ulu A., Önal B., Odabaşı M., Ateş B. L-asparaginase immobilized p(HEMA-GMA) cryogels: A recent study for biochemical, thermodynamic and kinetic parameters, Polymer Testing, 2021, 93(1): 106980. https://doi.org/10.1016/j.polymertesting.2020.106980
Nowak-Göttl U., Heinecke A., von Kries R., Nürnberger W., Münchow N., Junker R. Thrombotic events revisited in children with acute lymphoblastic leukemia: impact of concomitant Escherichia coli asparaginase/prednisone administration. Thrombosis Research, 2001, 103(3): 165-172. https://doi.org/10.1016/s0049-3848(01)00286-9
Orhan H., Uygun D.A. Immobilization of ASNase on magnetic nanoparticles for cancer treatment. Applied Biochemistry and Biotechnology, 2020, 1-12. https://doi.org/10.1007/s12010-020-03276-z
Panosyan E.H., Seibel N.L., Martin-Aragon S., Gaynon P.S., Avramis I.A., Sather H., Franklin J., Nachman J., Ettinger L.J., La M., Steinherz P., Cohen L.J., Siegel S.E., Avramis V.I. Asparaginase antibody and asparaginase activity in children with higher-risk acute lymphoblastic leukemia: Children's Cancer Group Study CCG-1961. Journal of Pediatric Hematology/Oncology, 2004, 26(4): 217-226. https://doi.org/10.1097/00043426-200404000-00002
Patel N., Krishnan S., Offman M.N., Krol M., Moss C.X., Leighton C., van Delft F.W., Holland M., Liu J.Z., Alexander S., Dempsey C., Ariffin H., Essink M., Eden T.O.B., Watts C., Bates P.A., Saha V. A dyad of lymphoblastic lysosomal cysteine proteases degrades the antileukemic drug ASNase. The Journal of Clinical Investigation, 2009, 119(7): 1964-1973. https://doi.org/10.1172/JCI37977
Piatkowska-Jakubas B., Krawczyk-Kuliś M., Giebel S., Adamczyk-Cioch M., Czyz A., Marańda E.L., Paluszewska M., Pałynyczko G., Piszcz J., Hołowiecki J. Use of ASNase in acute lymphoblastic leukemia: recommendations of the Polish Adult Leukemia Group. Polish Archives of Internal Medicine, 2008, 118(11): 664-669. https://doi.org/10.20452/pamw.518
Place A.E., Stevenson K.E., Vrooman L.M., Harris M.H., Hunt S.K., O'Brien J.E., Supko J.G., Asselin B.L., Athale U.H., Clavell L.A., Cole P.D., Kelly K.M., Laverdiere C., Leclerc J.-M., Michon B., Schorin M.A., Welch J.J.G., Lipshultz S.E., Kutok J.L., Blonquist T.M., Neuberg D.S., Sallan S.E., Silverman L.B. Intravenous pegylated asparaginase versus intramuscular native Escherichia coli ASNase in newly diagnosed childhood acute lymphoblastic leukaemia (DFCI 05-001): a randomised, open-label phase 3 trial. The Lancet Oncology, 2015, 16(16): 1677-1690. https://doi.org/10.1016/S1470-2045(15)00363-0
Poppenborg S.M., Wittmann J., Walther W., Brandenburg G., Krähmer R., Baumgart J., Leenders F. Impact of anti-PEG IgM antibodies on the pharmacokinetics of PEGylated asparaginase preparations in mice. European Journal of Pharmaceutical Sciences, 2016, 91(8): 122-130. https://doi.org/10.1016/j.ejps.2016.06.007
Poznansky M.J., Shandling M., Salkie M.A., Elliott J., Lau E. Advantages in the use of ASNase-albumin polymer as an antitumor agent. Cancer Research, 1982, 42(3): 1020-1025.
Qian G., Ma J., Zhou J., He B. The chemical modification of E. coli ASNase with poly (N-vinylpyffolidone-co-maleic anhydride). Artificial Cells, Blood Substitutes, and Biotechnology, 1996, 24(6): 567-577. https://doi.org/10.3109/10731199609118882
Raja R.A., Schmiegelow K., Frandsen T.L. Asparaginase‐associated pancreatitis in children. British Journal of Haematology, 2012, 159(1): 18-27. https://doi.org/10.1111/bjh.12016
Ramirez-Paz J., Saxena M., Delinois L.J., Joaquín-Ovalle F.M., Lin S., Chen Z., Rojas-Nieves V.A., Griebenow K. Thiol-maleimide poly (ethylene glycol) crosslinking of L-asparaginase subunits at recombinant cysteine residues introduced by mutagenesis. Plos ONE, 2018, 2018(8): 0197643. https://doi.org/10.1371/journal.pone.0197643
Ravera E, Martelli T, Geiger Y, Fragai M, Goobes G, Luchinat C. Biosilica and bioinspired silica studied by solid-state NMR. Coordination Chemistry Reviews. 2016, 327-328(11): 110-122. https://doi.org/10.1016/j.ccr.2016.06.003
Rodríguez‐Martínez J.A., Solá R.J., Castillo B., Cintrón‐Colón H.R., Rivera‐Rivera I., Barletta G., Griebenow K. Stabilization of α‐chymotrypsin upon PEGylation correlates with reduced structural dynamics. Biotechnology & Bioengineering, 2008, 101(6): 1142-1149. https://doi.org/10.1002/bit.22014
Saeed R.M., Dmour I., Taha M.O. Stable chitosan-based nanoparticles using polyphosphoric acid or hexametaphosphate for tandem ionotropic/covalent crosslinking and subsequent investigation as novel vehicles for drug delivery. Frontiers in Bioengineering and Biotechnology, 2020, 8(1): 00004. https://doi.org/10.3389/fbioe.2020.00004
Safary A., Moniri R., Hamzeh-Mivehroud M., Dastmalchi S. Highly efficient novel recombinant ASNase with no glutaminase activity from a new halo-thermotolerant Bacillus strain. BioImpacts, 2019, 9(1): 15-23. https://doi.org/10.15171/bi.2019.03
Sarbassov D.D., Ali S.M., Sabatini D.M. Growing roles for the mTOR pathway. Current Opinion in Cell Biology, 2005, 17(6): 596-603. https://doi.org/10.1016/j.ceb.2005.09.009
Sharma G., Rath G., Goyal A. Improved biological activity and stability of enzyme ASNase in solid lipid nanoparticles formulation. Journal of Drug Delivery and Therapeutics, 2019, 9(2-s): 325-329. https://doi.org/10.22270/jddt.v9i2-s.2708
Shaunak S., Godwin A., Choi J.-W., Balan S., Pedone E., Vijayarangam D., Heidelberger S., Teo I., Zloh M., Brocchini S. Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nature Chemical Biology, 2006, 2(6): 312-313. https://doi.org/10.1038/nchembio786
Shinnick S.E., Browning M.L., Koontz S. Managing hypersensitivity to asparaginase in pediatrics, adolescents, and young adults. Journal of Pediatric Hematology/Oncology Nursing, 2013, 30(2): 63-77. https://doi.org/10.1177/1043454212471728
Shrivastava A, Khan AA, Khurshid M, Kalam MA, Jain SK, Singhal PK. Recent developments in ASNase discovery and its potential as anticancer agent. Critical Reviews in Oncology/Hematology, 2016, 100(4): 1-10. https://doi.org/10.1016/j.critrevonc.2015.01.002
Sukhoverkov K.V., Kudryashova E.V. PEG-chitosan and glycol-chitosan for improvement of biopharmaceutical properties of recombinant ASNase from Erwinia carotovora. Biochemistry (Moscow), 2015, 80(1): 113-119. https://doi.org/10.1134/S0006297915010137
Ulu A., Koytepe S., Ates B. Synthesis and characterization of PMMA composites activated with starch for immobilization of L‐asparaginase. Journal of Applied Polymer Science, 2016, 133(19): 43421. https://doi.org/10.1002/app.43421
Ulu A., Noma S.A., Koytepe S., Ates B. Magnetic Fe3O4@MCM-41 core–shell nanoparticles functionalized with thiol silane for efficient ASNase immobilization. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(Suppl. 2): 1035-1045. https://doi.org/10.1080/21691401.2018.1478422
Van den Berg H. Asparaginase revisited. Leukemia & Lymphoma, 2011, 52(2): 168-178. https://doi.org/10.3109/10428194.2010.537796
Veronese F.M., Caliceti P., Schiavon O. Branched and linear poly (ethylene glycol): Influence of the polymer structure on enzymological, pharmacokinetic, and immunological properties of protein conjugates. Journal of Bioactive and Compatible Polymers, 1997, 12(3): 196-207. https://doi.org/10.1177/088391159701200303
Veronese F.M., Mero A. The impact of PEGylation on biological therapies. BioDrugs, 2008, 22(5): 315-329. https://doi.org/10.2165/00063030-200822050-00004
Veronese F.M., Monfardini C., Caliceti P., Schiavon O., Scrawen M.D., Beer D. Improvement of pharmacokinetic, immunological and stability properties of asparaginase by conjugation to linear and branched monomethoxy poly (ethylene glycol). Journal of Controlled Release, 1996, 40(3): 199-209. https://doi.org/10.1016/0168-3659(95)00185-9
Veronese F.M. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials. 2001, 22(5): 405-417. https://doi.org/10.1016/s0142-9612(00)00193-9
Vidya J., Sajitha S., Ushasree M.V., Sindhu R., Binod P., Madhavan A., Pandey A. Genetic and metabolic engineering approaches for the production and delivery of ASNases: An overview. Bioresource Technology, 2017, 245. Part B(12): 1775-1781. https://doi.org/10.1016/j.biortech.2017.05.057
Vieira Pinheiro J.P., Ahlke E., Nowak‐Göttl U., Hempel G., Müller H.J., Lümkemann K., Schrappe M., Rath B., Fleischhack G., Mann G., Boos J. Pharmacokinetic dose adjustment of Erwinia asparaginase in protocol II of the paediatric ALL/NHL‐BFM treatment protocols. British Journal of Haematology, 1999, 104(2): 313-320. https://doi.org/10.1046/j.1365-2141.1999.01192.x
Villanueva-Flores F., Zárate-Romero A., Torres A.G., Huerta-Saquero A. Encapsulation of asparaginase as a promising strategy to improve in vivo drug performance. Pharmaceutics, 2021, 13(11): 1965. https://doi.org/10.3390/pharmaceutics13111965
Vrooman L.M., Supko J.G., Neuberg D.S., Asselin B.L., Athale U.H., Clavell L., Kelly K.M., Laverdière C., Michon B., Schorin M., Cohen H.J., Sallan S.E., Silverman L.B. See fewer authors. Erwinia asparaginase after allergy to E. coli asparaginase in children with acute lymphoblastic leukemia. Pediatric Blood & Cancer, 2010, 54(2): 199-205. https://doi.org/10.1002/pbc.22225
Wileman T.E., Foster R.L., Elliott P.N.C. Soluble asparaginase‐dextran conjugates show increased circulatory persistence and lowered antigen reactivity. Journal of Pharmacy and Pharmacology, 1986, 38(4): 264-271. https://doi.org/10.1111/j.2042-7158.1986.tb04564.x
Yamaguchi M., Suzuki R., Kwong Y.L., Kim W.S., Hasegawa Y., Izutsu K., Suzumiya J., Okamura T., Nakamura S., Kawa K., Oshimi K. Phase I study of dexamethasone, methotrexate, ifosfamide, l‐asparaginase, and etoposide (SMILE) chemotherapy for advanced‐stage, relapsed or refractory extranodal natural killer (NK)/T‐cell lymphoma and leukemia. Cancer Science (formerly Japanese Journal of Cancer Research), 2008, 99(5): 1016-1020. https://doi.org/10.1111/j.1349-7006.2008.00768.x
Yong W., Zheng W., Zhang Y., Zhu J., Wei Y., Zhu D., Li J. ASNase-based regimen in the treatment of refractory midline nasal/nasal-type T/NK-cell lymphoma. International Journal of Hematology, 2003, 78(2): 163-167. https://doi.org/10.1007/BF02983387
Youssef M.M., Al-Omair M.A. Cloning, purification, characterization and immobilization of ASNase II from E. coli W3110. Asian Journal of Biochemistry, 2008, 3(6): 337-350. https://doi.org/10.3923/ajb.2008.337.350
Zhang C., Yang X.l., Yuan Y.H., Pu J., Liao F. Site-specific PEGylation of therapeutic proteins via optimization of both accessible reactive amino acid residues and PEG derivatives. BioDrugs, 2012, 26(4): 209-215. https://doi.org/10.1007/BF03261880
Zhang L., Liu Y., Liu G., Xu D., Liang S., Zhu X., Lu Y., Wang H. Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Research, 2016, 9(8): 2424-2432. https://doi.org/10.1007/s12274-016-1128-4

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Open access articles are distributed under the terms and conditions of the Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0) license:
https://creativecommons.org/licenses/by-sa/4.0
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102