Main Article Content

Molaligne Medfu Tarekegn Mekash Teferra


Bacillus thuringiensis (Bt.) is ubiquitous, a gram-positive and spore-forming bacterium found in natural habitats everywhere in the world. For this study, Bt. has been isolated and characterized using a variety of techniques. Twenty-one strains showed positive results for the four sets of primers including, cry1, cry2, cry3, and cry9 genes. The PCR amplified results cry1 (33.3%) were most abundant among the tested cry-type genes next to cry9 (25%), cry2 (16.6%), and cry3 (12.5%), respectively. Three strains did not amplify. Twenty-four Bt. isolates were tested for the bioassay with a third-instar diamondback moth. The mortality of this insect was not shown after treatment for 24h. However, after 48 and 72h showed 20-61% and 20-79% mortality, respectively. The four Bt. strains tested against diamondback moth larvae showed no insecticidal activity. Therefore, the isolates in this study were promising for bio-insecticidal properties for diamondback moth and plant pest control programs.

Article Details


Ahmad M., Sayyed A.H., Saleem M.A., Ahmad M. Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Protection, 2008, 27(10): 1367-1372.

Andrzejczak S., Lonc E.L. Selective isolation of Bacillus thuringiensis from soil by use of L-serine as minimal medium supplement. Polish Journal of Microbiology, 2008, 57(4): 333-335. Available at:

Ben-Dov E., Zaritsky A., Dahan E., Barak Z.E., Sinai R., Manasherob R., Khamraev A., Troitskaya E., Dubitsky A., Berezina N., Margalith Y. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Applied and Environmental Microbiology, 1997, 63(12): 4883-4890.

Berón C.M., Curatti L., Salerno G.L. New strategy for identification of novel cry-type genes from Bacillus thuringiensis strains. Applied and Environmental Microbiology, 2005, 71(2): 761-765.

Carozzi N.B., Kramer V.C., Warren G.W., Evola S., Koziel M.G. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Applied and Environmental Microbiology, 1991, 57(11): 3057-3061.

Ceron J., Ortíz A., Quintero R., Güereca L., Bravo A. Specific PCR primers directed to identify cryI and cryIII genes within a Bacillus thuringiensis strain collection. Applied and Environmental Microbiology, 1995, 61(11): 3826-3831.

Domínguez-Arrizabalaga M., Villanueva M., Escriche B., Ancín-Azpilicueta C., Caballero P. Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins, 2020, 12(7): 430.

Goudar G., Alagawadi A.R., Krishnaraj P.U., Goud K.B. Characterization of Bacillus thuringiensis isolates of Western Ghats and their insecticidal activity against diamond back moth (Plutella xylostella L.). Karnataka Journal of Agricultural Sciences, 2012, 25(2): 99-202.

Htwe A.N., Takasu K., Takagi M. Laboratory rearing of the diamondback moth Plutella xylostella (L.). Journal of the Faculty of Agriculture, Kyushu University, 2009, 54(1): 147-151. Available at:

Jain D., Kachhwaha S., Jain R., Kothari S.L. PCR based detection of cry genes in indigenous strains of Bacillus thuringiensis isolated from the soils of Rajasthan. Indian Journal of Biotechnology, 2012, 11(1): 491-494. Available at:

Ganga G.C., Arjya C., Khadka Y., Dhamala S. Diversity of Insecticidal Crystal proteins (ICPs) of indigenous Bacillus thuringiensis strains. Tribhuvan University Journal of Microbiology, 2018, 5(2108): 11-18.

Jurat-Fuentes J.L., Crickmore N. Specificity determi-nants for Cry insecticidal proteins: Insights from their mode of action. Journal of Invertebrate Pathology, 2017, 142(1): 5-10.

Kamatham S., Munagapati S., Manikanta K.N., Vulchi R., Chadipiralla K., Indla S.H., Allam U.S. Recent advances in engineering crop plants for resistance to insect pests. Egyptian Journal of Biological Pest Control, 2021, 31(1): 1-4.

Khan M., Paul B., Ahmad W., Paul S., Aggarwal C., Khan Z., Akhtar M. Potential of Bacillus thuringiensis in the Management of Pernicious Lepidopteran Pests. In: Plant, Soil and Microbes (K. Hakeem, M. Akhtar Eds). Springer, Cham. 2016, pp. 277-301, Print ISBN: 978-3-319-29572-5, eBook ISBN: 978-3-319-29573-2.

Khojand S., Keshavarzi M., Zargari K., Abdolahi H., Rouzbeh F. Presence of multiple cry genes in Bacillus thuringiensis isolated from dead cotton bollworm Heliothis armigera. Journal of Agricultural Science and Technology (Iran), 2013, 15(6): 1285-1292.

Lobo K.D., Soares-da-Silva J., Silva M.C., Tadei W.P., Polanczyk R.A., Pinheiro V.C. Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Revista Brasileira de Entomologia, 2018, 62(1): 5-12.

Pardo-Lopez L., Soberon M., Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews, 2013, 37(1): 3-22.

Rabha M., Sharma S., Acharjee S., Sarmah B.K. Isolation and characterization of Bacillus thuringiensis strains native to assam soil of North East India. 3 Biotech, 2017, 7(5): 1-9.

Reyaz A.L., Gunapriya L., Indra Arulselvi P. Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley. 3 Biotech, 2017, 7(2017): 143.

Salama H.S., Abd El-Ghany N.M., Saker M.M. Diversity of Bacillus thuringiensis isolates from Egyptian soils as shown by molecular characterization. Journal of Genetic Engineering and Biotechnology, 2015, 13(2): 101-109.

Sauka D.H., Cozzi J.G., Benintende G.B. Screening of cry2 genes in Bacillus thuringiensis isolates from Argentina. Antonie Van Leeuwenhoek, 2005, 88(2): 163-165.

Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 1998, 62(3): 775-806.

Shishir A., Roy A., Islam N., Rahman A., Khan S.N, Hoq M.M. Abundance and diversity of Bacillus thuringiensis in Bangladesh and their cry genes profile. Frontiers in Environmental Science, 2014, 2(6): 20.

Tenssay Z.W., Ashenafi M., Eiler A., Bertilson S. Isolation and characterization of Bacillus thuringiensis from soils in contrasting agroecological zones of Ethiopia. SINET: Ethiopian Journal of Science, 2009, 32(2): 117-128.

Topagi S.C., Bhanu K.R.M., Ashok Kumar C.T. Mass trapping technique using pheromones: A standalone method for management of diamondback moth, Plutella xylostella (Linnaeus) (Plutellidae: Lepidoptera) in Cabbage. International Journal of Applied Science and Engineering, 2018, 15(3): 211-232. Available at:

Song Y., Liu L., Shen H., You J., Luo Y. Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control, 2011, 22(3-4): 608-615.

Volpe M.G., Siano F., Paolucci M., Sacco A., Sorrentino A., Malinconico M., Varricchio E. Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchus mykiss) fillets. LWT - Food Science and Technology, 2015, 60(1): 615-622.

How to Cite
TAREKEGN, Molaligne Medfu; TEFERRA, Mekash. Isolation and molecular characterization of Bacillus thuringiensis strains obtained from different habitats in Northwest Ethiopia. Food Science and Applied Biotechnology, [S.l.], v. 6, n. 1, p. 134-142, mar. 2023. ISSN 2603-3380. Available at: <>. Date accessed: 25 july 2024. doi: