Isolation and molecular characterization of Bacillus thuringiensis strains obtained from different habitats in Northwest Ethiopia Isolation and Molecular Characterization of Bacillus thuringiensis Strains Obtained from Different Habitats in Northwest Ethiopia
Main Article Content
Abstract
Bacillus thuringiensis (Bt.) is ubiquitous, a gram-positive and spore-forming bacterium found in natural habitats everywhere in the world. For this study, Bt. has been isolated and characterized using a variety of techniques. Twenty-one strains showed positive results for the four sets of primers including, cry1, cry2, cry3, and cry9 genes. The PCR amplified results cry1 (33.3%) were most abundant among the tested cry-type genes next to cry9 (25%), cry2 (16.6%), and cry3 (12.5%), respectively. Three strains did not amplify. Twenty-four Bt. isolates were tested for the bioassay with a third-instar diamondback moth. The mortality of this insect was not shown after treatment for 24h. However, after 48 and 72h showed 20-61% and 20-79% mortality, respectively. The four Bt. strains tested against diamondback moth larvae showed no insecticidal activity. Therefore, the isolates in this study were promising for bio-insecticidal properties for diamondback moth and plant pest control programs.
Article Details
References
Andrzejczak S., Lonc E.L. Selective isolation of Bacillus thuringiensis from soil by use of L-serine as minimal medium supplement. Polish Journal of Microbiology, 2008, 57(4): 333-335. Available at: http://www.pjmonline.org/wp-content/uploads/2015/12/vol5742008333.pdf
Ben-Dov E., Zaritsky A., Dahan E., Barak Z.E., Sinai R., Manasherob R., Khamraev A., Troitskaya E., Dubitsky A., Berezina N., Margalith Y. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Applied and Environmental Microbiology, 1997, 63(12): 4883-4890. https://doi.org/10.1128/aem.63.12.4883-4890.1997
Berón C.M., Curatti L., Salerno G.L. New strategy for identification of novel cry-type genes from Bacillus thuringiensis strains. Applied and Environmental Microbiology, 2005, 71(2): 761-765. https://doi.org/10.1128/AEM.71.2.761-765.2005
Carozzi N.B., Kramer V.C., Warren G.W., Evola S., Koziel M.G. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Applied and Environmental Microbiology, 1991, 57(11): 3057-3061. https://doi.org/10.1128/aem.57.11.3057-3061.1991
Ceron J., Ortíz A., Quintero R., Güereca L., Bravo A. Specific PCR primers directed to identify cryI and cryIII genes within a Bacillus thuringiensis strain collection. Applied and Environmental Microbiology, 1995, 61(11): 3826-3831. https://doi.org/10.1128/aem.61.11.3826-3831.1995
Domínguez-Arrizabalaga M., Villanueva M., Escriche B., Ancín-Azpilicueta C., Caballero P. Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins, 2020, 12(7): 430. https://doi.org/10.3390/toxins12070430
Goudar G., Alagawadi A.R., Krishnaraj P.U., Goud K.B. Characterization of Bacillus thuringiensis isolates of Western Ghats and their insecticidal activity against diamond back moth (Plutella xylostella L.). Karnataka Journal of Agricultural Sciences, 2012, 25(2): 99-202.
Htwe A.N., Takasu K., Takagi M. Laboratory rearing of the diamondback moth Plutella xylostella (L.). Journal of the Faculty of Agriculture, Kyushu University, 2009, 54(1): 147-151. Available at: https://catalog.lib.kyushu-u.ac.jp/opac_download_md/14051/p147.pdf
Jain D., Kachhwaha S., Jain R., Kothari S.L. PCR based detection of cry genes in indigenous strains of Bacillus thuringiensis isolated from the soils of Rajasthan. Indian Journal of Biotechnology, 2012, 11(1): 491-494. Available at: http://nopr.niscpr.res.in/bitstream/123456789/15692/1/IJBT%2011%284%29%20491-494.pdf
Ganga G.C., Arjya C., Khadka Y., Dhamala S. Diversity of Insecticidal Crystal proteins (ICPs) of indigenous Bacillus thuringiensis strains. Tribhuvan University Journal of Microbiology, 2018, 5(2108): 11-18. https://doi.org/10.3126/tujm.v5i0.22296
Jurat-Fuentes J.L., Crickmore N. Specificity determi-nants for Cry insecticidal proteins: Insights from their mode of action. Journal of Invertebrate Pathology, 2017, 142(1): 5-10. https://doi.org/10.1016/j.jip.2016.07.018
Kamatham S., Munagapati S., Manikanta K.N., Vulchi R., Chadipiralla K., Indla S.H., Allam U.S. Recent advances in engineering crop plants for resistance to insect pests. Egyptian Journal of Biological Pest Control, 2021, 31(1): 1-4. https://doi.org/10.1186/s41938-021-00465-8
Khan M., Paul B., Ahmad W., Paul S., Aggarwal C., Khan Z., Akhtar M. Potential of Bacillus thuringiensis in the Management of Pernicious Lepidopteran Pests. In: Plant, Soil and Microbes (K. Hakeem, M. Akhtar Eds). Springer, Cham. 2016, pp. 277-301, Print ISBN: 978-3-319-29572-5, eBook ISBN: 978-3-319-29573-2. https://doi.org/10.1007/978-3-319-29573-2_13
Khojand S., Keshavarzi M., Zargari K., Abdolahi H., Rouzbeh F. Presence of multiple cry genes in Bacillus thuringiensis isolated from dead cotton bollworm Heliothis armigera. Journal of Agricultural Science and Technology (Iran), 2013, 15(6): 1285-1292. https://www.sid.ir/paper/622069/en
Lobo K.D., Soares-da-Silva J., Silva M.C., Tadei W.P., Polanczyk R.A., Pinheiro V.C. Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Revista Brasileira de Entomologia, 2018, 62(1): 5-12. https://doi.org/10.1016/j.rbe.2017.11.004
Pardo-Lopez L., Soberon M., Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews, 2013, 37(1): 3-22. https://doi.org/10.1111/j.1574-6976.2012.00341.x
Rabha M., Sharma S., Acharjee S., Sarmah B.K. Isolation and characterization of Bacillus thuringiensis strains native to assam soil of North East India. 3 Biotech, 2017, 7(5): 1-9. https://doi.org/10.1007/s13205-017-0935-y
Reyaz A.L., Gunapriya L., Indra Arulselvi P. Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley. 3 Biotech, 2017, 7(2017): 143. https://doi.org/10.1007/s13205-017-0756-z
Salama H.S., Abd El-Ghany N.M., Saker M.M. Diversity of Bacillus thuringiensis isolates from Egyptian soils as shown by molecular characterization. Journal of Genetic Engineering and Biotechnology, 2015, 13(2): 101-109. https://doi.org/10.1016/j.jgeb.2015.10.001
Sauka D.H., Cozzi J.G., Benintende G.B. Screening of cry2 genes in Bacillus thuringiensis isolates from Argentina. Antonie Van Leeuwenhoek, 2005, 88(2): 163-165.https://doi.org/10.1007/s10482-005-3368-2
Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 1998, 62(3): 775-806. https://doi.org/10.1128/mmbr.62.3.775-806.1998
Shishir A., Roy A., Islam N., Rahman A., Khan S.N, Hoq M.M. Abundance and diversity of Bacillus thuringiensis in Bangladesh and their cry genes profile. Frontiers in Environmental Science, 2014, 2(6): 20. https://doi.org/10.3389/fenvs.2014.00020
Tenssay Z.W., Ashenafi M., Eiler A., Bertilson S. Isolation and characterization of Bacillus thuringiensis from soils in contrasting agroecological zones of Ethiopia. SINET: Ethiopian Journal of Science, 2009, 32(2): 117-128. https://doi.org/10.4314/sinet.v32i2.68863
Topagi S.C., Bhanu K.R.M., Ashok Kumar C.T. Mass trapping technique using pheromones: A standalone method for management of diamondback moth, Plutella xylostella (Linnaeus) (Plutellidae: Lepidoptera) in Cabbage. International Journal of Applied Science and Engineering, 2018, 15(3): 211-232. Available at: https://gigvvy.com/journals/ijase/articles/ijase-201812-15-3-211.pdf
Song Y., Liu L., Shen H., You J., Luo Y. Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control, 2011, 22(3-4): 608-615. https://doi.org/10.1016/j.foodcont.2010.10.012
Volpe M.G., Siano F., Paolucci M., Sacco A., Sorrentino A., Malinconico M., Varricchio E. Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchus mykiss) fillets. LWT - Food Science and Technology, 2015, 60(1): 615-622. https://doi.org/10.1016/j.lwt.2014.08.048
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Open access articles are distributed under the terms and conditions of the Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0) license:
https://creativecommons.org/licenses/by-sa/4.0
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102