Effect of the lignocellulose substrate type on mycelium growth and biocomposite formation by Ganoderma lucidum GA3P Lignocellulose substrates for biocomposites
Main Article Content
Abstract
The lignocellulose agricultural wastes, one of the major environmental pollutants, represent an extremely rich resource with high nutritional value, which can be used in the production of value-added products. In the current study the effect of different lignocellulose substrates on the growth rate of Ganoderma lucidum GA3P and the formation of mycelium-based bio-composites was determined. The macromorphology and specific mycelial growth rate of the colonies on different media containing various lignocellulosic substrate were studied. The obtained composites were characterized regarding their density of the mycelial growth, apparent density and size. G. lucidum GA3P demonstrated high μmax values ranging from 0.267 d-1 to 0.558 d-1 and low K values indicating that all used media were suitable for cultivation, but when wheat bran was used, the formed mycelium-based bio-composites possessed the best characteristics with highest apparent density recorded (0.39 ± 0.005).
Article Details
References
Angelova G., Brazkova M., Stefanova P., Blazheva D., Vladev V., Petkova N., Slavov A., Denev P., Karashanova D., Zaharieva R., Enev A., Krastanov A. Waste rose flower and lavender straw biomass - an innovative lignocellulose feedstock for mycelium bio-materials development using newly isolated Ganoderma resinaceum GA1M. Journal of Fungi. 2021, 7(10): 866. https://doi.org/10.3390/jof7100866
Appels F.V., Camere S., Montalti M., Karana E., Jansen K., Dijksterhuis J., Krijgsheld P., Wösten H.A. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Materials and Design. 2019, 161(1): 64-71. https://doi.org/10.1016/j.matdes.2018.11.027
Bilal M., Asgherb M., Iqbal H., Hua H., Zhanga X. Biotransformation of lignocellulosic materials into value-added products - a review. International Journal of Biological Macromolecules, 2017, 98(5): 447-458. https://doi.org/10.1016/j.ijbiomac.2017.01.133
Carvalheiro F., Silva-Fernandes T., Duarte L.C., Gírio F.M. Wheat straw autohydrolysis: process optimization and products characterization. Applied Biochemistry and Biotechnology. 2009, 153(1-3): 84-93. https://doi.org/10.1007/s12010-008-8448-0
Chávez-Rosales J.S., Pintor-Ibarra L.F., González-Ortega N., Orihuela-Equihua R., Ruiz-Aquino F., Luján-Álvarez C., Rutiaga-Quinones J.G. Basic chemical composition of Pinus spp. sawdust from five regions of Mexico, for bioenergetic purposes. BioResources. 2021, 16(1): 816-824. https://doi.org/10.15376/biores.16.1.816-824
Haneef M., Caseracciu L., Canale C., Bayer I., Heredia-Guerrero J., Athanassiou A. Advanced materials from fungal mycelium: fabrication and tunning of physical properties, Scientific Reports, 2017, 7(1): 41292. https://doi.org/10.1038/srep41292
Karana E., Blauwhoff D., Hultink E., Camere S. When the material grows: a case study on designing (with) mycelium-based materials. International Journal of Design, 2018, 12(2): 119-136. Available at: http://www.ijdesign.org/index.php/IJDesign/article/viewFile/2918/817
Liu R., Long L., Sheng Y., Xu J., Qui H., Li X., Wang Y., Wu H. Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effect of pressing temperature on the properties. Industrial Crops and Products. 2019, 141(12): 111732. https://doi.org/10.1016/j.indcrop.2019.111732
Pérez J., Muñoz-Dorado J., De-la-Rubia T., Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 2002, 5(4): 53-63. https://doi.org/10.1007/s10123-002-0062-3
Piri I., Das O., Hedenqvist M., Vaisanen T., Ikram S., Bhattacharyya D. Imparting resiliency in biocomposite production systems: a system dynamics approach, Journal of Clean Production, 2018, 179(4):450-459. https://doi.org/10.1016/j.jclepro.2018.01.065
Ridzqo I., Susanto D., Panjaitan T., Putra N. Sustainable material: Development experiment of bamboo composite through biologically binding mechanism. IOP Conference Series: Material Science and Engineering, 2020, 713(8): 012010. https://doi.org/10.1088/1757-899X/713/1/012010
Roy S., Jahan M.A., Das K., Munshi S.K., Noor R. Artificial cultivation of Ganoderma lucidum (Reishi medicinal mushroom) using different sawdusts as substrates, American Journal of BioScience, 2015, 3(5): 178-182. https://doi.org/10.11648/j.ajbio.20150305.13
Sun W., Tajvidi M., Hunt C., McIntyre G., Gardner D.J. Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose nanofibrils. Science Reports, 2019, 9(3): 3766. https://doi.org/10.1038/s41598-019-40442-8
Tacer-Caba Z., Varis J., Lankinen P., Mikkonen K. Comparison of novel fungal mycelium strains and sustainable growth substrates to produce humidity-resistant biocomposites. Materials and Design. 2020, 192(7): 108728. https://doi.org/10.1016/j.matdes.2020.108728
Weiser H., Koehler P., Scherf K. Wheat-based raw materials. In: Wheat - An Exceptional Crop. Botanical Features, Chemistry, Utilization, Nutritional and Health Aspects (H. Wieser, P. Koehler and K.A. Scherf Eds.). Woodhead Publishing. 2020, pp.103-131, ISBN: 978-0-12-821715-3. https://doi.org/10.1016/B978-0-12-821715-3.00005-8

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Open access articles are distributed under the terms and conditions of the Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0) license:
https://creativecommons.org/licenses/by-sa/4.0
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102