Main Article Content

Simran R Lilwani Sneha M Dokhale Parvathi JR Madhavi R Vernekar

Abstract

The catabolic diversity and biocatalytic potential in members of genus Rhodococcus makes it an ideal industrial workhouse for metabolite production. Despite their applicability, Rhodococci are least explored for carotenoids, located in their cell membrane. The goal of the present study was to identify the carotenoids of Rhodococcus kroppenstedtii MH715196. UV-Vis spectral data and molecular mass estimates showed that the principal carotenoid extracted from R. kroppenstedtii MH715196 was 1’-OH-4-keto-ϒ-carotene. Biosynthetic route of 1’-OH-4-keto-ϒ-carotene in R. kroppenstedtii MH715196 was postulated on the basis of molecular mass estimates in co-relation with putative carotenoid biosynthetic genes identified in the genome of the reference strains of R. kroppenstedtii. Three key enzymes, were then considered for phylogenetic analysis to establish the phylogenetic relationship across the Rhodococcus genus leading the way for carotenoid identification in other Rhodococcus species. The present study would be the first report on identification of a rare polar carotenoid from R. kroppenstedtii MH715196 which could be potentially explored as a food colorant in hydrophilic food matrices like jams, jellies, beverages etc.

Article Details

References

McWilliams A. The global market for carotenoids. In: BCC Research: Wellesley, MA, USA, 2018.

Saini R.K., Keum Y.S. Carotenoid extraction methods: A review of recent developments. Food chemistry, 2018, 240: 90-103. https://doi.org/10.1016/j.foodchem.2017.07.099-188

Saini R.K., Keum Y.S. Microbial platforms to produce commercially vital carotenoids at industrial scale: An updated review of critical issues. Journal of Industrial Microbiology & Biotechnology, 2019, 46(5): 657–674. https://doi.org/10.1007/s10295-018-2104-7

Ye Z.W., Jiang J.G., Wu G.H. Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol. Adv., 2008, 26: 352–360. https://doi.org/10.1016/j.biotechadv.2008.03.004

Numan M., Bashir S., Mumtaz R., Tayyab S., Rehman N.U., Khan A.L., Shinwari Z.K., Al-Harrasi A. Therapeutic applications of bacterial pigments: A review of current status and future opportunities. 3. Biotech, 2018, 8(4): 207. https://doi.org/10.1007/s13205-018-1227-x

Elsayed Y., Refaat J., Abdelmohsen U.R., Fouad M.A. The Genus Rhodococcus as a source of novel bioactive substances: A review. J Pharmacogn. Phytochem., 2017, 6(3): 83-92.

Cappelletti M., Presentato A., Piacenza E., Firrincieli A., Turner R.J., Zannoni D. Biotechnology of Rhodococcus for the production of valuable compounds. Applied Microbiology and Biotechnology, 2020, 12: 1-28. https://doi.org/10.1007/s00253-020-10861-z

Sandmann G. Carotenoid biosynthesis in the phylum Actinobacteria. Advances in Experimental Medicine and Biology, 2021, 175-181. https://doi.org/10.1007/978-981-15-7360-6_14

Tao L., Picataggio S., Rouviere P.E., Cheng Q. Asymmetrically acting lycopene β-cyclases (CrtLm) from non-photosynthetic bacteria. Molecular Genetics and Genomics, 2004, 271(2): 180-8. https://doi.org/10. 1007/s00438-003-0969-1

Ichiyama S., Shimokata K., Tsukamura M. Carotenoid pigments of genus Rhodococcus. Microbiology and immunology, 1989, 33(6): 503-8. https://doi.org/10.1111/j.1348-0421.1989.tb01999.x

Mariutti L.R., Mercadante A.Z. Carotenoid esters analysis and occurrence: What do we know so far?. Archives of biochemistry and biophysics, 2018, 648: 36-43. https://doi.org/10.1016/j.abb.2018.04.005

Rivera S.M., Christou P., Canela‐Garayoa R. Identification of carotenoids using mass spectrometry. Mass Spectrometry Reviews, 2014, 33(5): 353-72. https://doi.org/10.1002/mas.21390

Mayilraj S., Krishnamurthi S., Saha P., Saini H.S. Rhodococcus kroppenstedtii sp. nov., a novel actinobacterium isolated from a cold desert of the Himalayas, India. International journal of systematic and evolutionary microbiology, 2006, 56(5): 979-82. https://doi.org/10.1099/ijs.0.63831-0

Kulkarni R., Deobagkar D., Zinjarde S. Nanoparticles derived from Rhodococcus kroppenstedtii as bioactive agents for controlling aquaculture associated bacterial pathogens. Aquaculture, 2022, 547: 737538. https://doi.org/10.1016/j.aquaculture.2021.737538

Lilwani S.R., Patil S.U., Parvathi J.R., Vernekar M.R. Statistical Optimization of Medium Components for Carotenoid Production Using an Indigenous Isolate Rhodococcus kroppenstedtii. Journal of Advanced Scientific Research, 2021, HBIA: 26-34.

Madhukar C.V. Antimicrobial and Antioxidant potentials of Carotenoid Pigment Produced by Indigenous Novel Soil Isolate Rhodococcus kroppenstedtii. World Journal of Environmental Biosciences, 2021, 10(1): 29-34. https://doi.org/10.51847/9QrSrJyTN2

Dhaouadi S., Win J., Mougou A.H., Harant A., Kamoun S., Rhouma A. Genome Sequences of Plant-Associated Rhodococcus sp. Isolates from Tunisia. Microbiology Resource Announcements, 2020, 9(23): e00293-20. https://doi.org/10.1128/MRA.00293-20

Schoch C.L., Ciufo S., Domrachev M., Hotton C.L., Kannan S., Khovanskaya R., Leipe D., Mcveigh R., O’Neill K., Robbertse B., Sharma S. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database, 2020.

Osawa A., Kasahara S., Masttuoka S., Gassel S., Sandmann G., Shindo K. Isolation of a novel carotenoid, OH-chlorobactene glucoside hexadecanoate, and related rare carotenoids from Rhodococcus sp. CIP and their antioxidative activities. Biosci Biotechnol Biochem., 2011, 75: 2142–2147. https://doi.org/10.1271/bbb.110441

Tao L., Wagner L.W., Rouvière P.E., Cheng Q. Metabolic engineering for synthesis of aryl carotenoids in Rhodococcus. Applied microbiology and biotechnology, 2006, 70(2): 222-8. https://doi.org/10.1007/s00253-005-0064-0

Kusmita L., Mutiara E.V., Nuryadi H., Pratama P.A., Wiguna A.S., Radjasa O.K. Characterization of carotenoid pigments from bacterial symbionts of soft-coral Sarcophyton sp. from North Java Sea. International Aquatic Research, 2017, 9(1): 61-9.. https://doi.org/10.1007/s40071-017-0157-2

Altermann E., Klaenhammer T.R. Pathway Voyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC genomics, 2005, 6(1):1-7. https://doi.org/10.1186/1471-2164-6-60

Mao X., Cai T., Olyarchuk J.G., Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 2005, 21(19): 3787-93. https://doi.org/10.1093/bioinformatics/bti430

Stackebrandt E., Rainey F.A., Ward-Rainey N.L. Proposal for a new hierarchic classification system, Actinobacteria classis nov. International Journal of Systematic and Evolutionary Microbiology, 1997, 47(2): 479-91. https://doi.org/10.1099/00207713-47-2-479

Takaichi S., Maoka T., Akimoto N., Carmona M.L., Yamaoka Y. Carotenoids in a Corynebacterineae, Gordonia terrae AIST-1: carotenoid glucosyl mycoloyl esters. Bioscience, biotechnology, and biochemistry, 2008, 0809081045. https://doi.org/10.1271/bbb.80299

Sowani H., Mohite P., Damale S., Kulkarni M., Zinjarde S. Carotenoid stabilized gold and silver nanoparticles derived from the Actinomycete Gordonia amicalis HS-11 as effective free radical scavengers. Enzyme and microbial technology, 2016, 95: 164-73. https://doi.org/10.1016/j.enzmictec.2016.09.016

Pruitt K.D., Tatusova T., Maglott D.R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic acids research, 2007, 35(suppl_1): D61-5. https://doi.org/10.1093/nar/gkl842

Federhen S. The NCBI taxonomy database. Nucleic Acids Research, 2011, 40(D1): D136-D143. https://doi.org/10.1093/nar/gkr1178

Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T.L. NCBI BLAST: a better web interface. Nucleic acids research, 2008, 36(suppl_2): W5-9. https://doi.org/10.1093/nar/gkn201

Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., Thompson J.D. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular systems biology, 2011, 7(1): 539. https://doi.org/10.1038/msb.2011.75

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 2013, 30(12): 2725-9. https://doi.org/10.1093/molbev/mst197

Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, 4(4): 406-425.

Stine R. An Introduction to Bootstrap Methods: Examples and Ideas. Sociological Methods & Research, 1989, 18(2-3): 243-291. doi:10.1177/0049124189018002003

Gu X., Li W.H. Estimation of evolutionary distances under stationary and nonstationary models of nucleotide substitution. In: Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 5899–5905. https://doi.org/10.1073/pnas.95.11.5899

van Breemen R.B. Mass spectrometry of chlorophylls. Current Protocols in Food Analytical Chemistry, 2001, 1(1): F4.5.1-F4.5.9. https://doi.org/10.1002/0471142913.faf0405s01

Sangal V., Goodfellow M., Jones A.L., Schwalbe E.C., Blom J., Hoskisson P.A., Sutcliffe I.C. Next-generation systematics: an innovative approach to resolve the structure of complex prokaryotic taxa. Scientific reports, 2016, 6(1): 1-2. https://doi.org/10.1038/srep38392

Takaichi S., Ishidsu J.I., Seki T., Fukada S. Carotenoid pigments from Rhodococcus rhodochrous RNMS1: two monocyclic carotenoids, a carotenoid monoglycoside and carotenoid glycoside monoesters. Agricultural and biological chemistry, 1990, 54(8): 1931-7. https://doi.org/10.1271/bbb1961.54.1931

How to Cite
LILWANI, Simran R et al. Isolation and characterization of a rare polar carotenoid 1’-OH-4-keto-ϒ-carotene from an indigenously isolated Rhodococcus kroppenstedtii MH715196. Food Science and Applied Biotechnology, [S.l.], v. 5, n. 2, p. 199-210, oct. 2022. ISSN 2603-3380. Available at: <https://www.ijfsab.com/index.php/fsab/article/view/200>. Date accessed: 16 sep. 2024. doi: https://doi.org/10.30721/fsab2022.v5.i2.200.