Changes of lipid composition from culture fluid during the production of antibiotic salinomycin Changes of lipid composition from culture fluid…
Main Article Content
Abstract
A major step in the biotechnological process of production of antibiotic salinomycin is fermentation, which has the greatest impact on the quality of the final product. Vegetable oils (rapeseed or soybean) are used as nutrient medium during fermentation, with some of the lipids embedded in the final product. Data on their effect on product quality is missing, which is why a study of the changes in the composition of lipids in cultural fluid during the fermentation process was conducted. The composition of the residual lipids isolated from three samples of the culture fluid during fermentation (213, 405 and 490 hours), was investigated before drying the final product. The lipid content of the samples was 6.3%, 3.5% and 6.2%. The main trend is an increase in the amount of saturated fatty acids at the expense of a decrease in unsaturated acids. The amount of tocopherols during the fermentation process increased as well as γ-tocopherol, while the amount of α-tocopherol decreased. The content of carotenoids decreased twice during fermentation. Phosphatidylcholine and phosphatidylethanolamine were identified as major polar lipid components. The main phospholipid classes contain mainly palmitic, stearic and oleic acids. Significant changes in general lipid composition were observed during the biosynthesis process.
Article Details
References
Biehler E., Mayer F., Hoffmann L., Krause E., Bohn T. Comparison of 3 spectrophotometric methods for carotenoid determination in frequently consumed fruits and vegetables. Journal of Food Science, 2010, 75(1): C55-61. https://doi.org/10.1111/j.1750-3841.2009.01417.x.
Chappel L. R. The site of action of the anticoccidial Salinomycin (Coxistac). The Journal of Parasitology, 1979, 65(1): 137-143. https://doi.org/10.2307/3280218
Chuchkov B. S., Antova G. A. Composition of residual lipids isolated from salinomycin. Bulgarian Chemical Communications, 2019, 51(D): 273-276. http://bcc.bas.bg/BCC_Volumes/Volume_51_Special_D_2019/BCC-51-D-2019_Full.pdf#page=274
Company standard “Biovet” Peshtera QCD-FPC-0878-09. Determination of crude fat content, 2008. Amendment, 2014.
Folch J., Lees M., Sloane-Stanley G.H. A simple method for isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 1957, 226(1): 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
Huczyński A., Janczak J., Stefańska J., Antoszczak M., Brzezinski B. Synthesis and antimicrobial activity of amide derivatives of polyether antibiotic-salinomycin. Bioorganic and Medicinal Chemistry Letters, 2012, 22(14): 4697–4702. https://doi.org/10.1016/j.bmcl.2012.05.081
ISO 12966-1:2014. Animal and vegetable fats and oils. Gas chromatography of fatty acid methyl esters. Part 1: Guidelines on modern gas chromatography of fatty acid methyl esters. Geneva, Switzerland: International Organization for Standardization (ISO), 2014.
ISO 12966-2:2011. Animal and vegetable fats and oils. Gas chromatography of fatty acid methyl esters Part 2: Preparation of methyl esters of fatty acids. Geneva, Switzerland: International Organization for Standardization (ISO), 2011.
ISO 9936:2016. Animal and vegetable fats and oils. Determination of tocopherol and tocotrienol contents by high-performance liquid chromatography. Geneva, Switzerland: International Organization for Standardization (ISO), 2016.
ISO 10540-1:2014. Animal and vegetable fats and oils. Determination of phosphorus content – Part 1: Colorimetric method. Geneva, Switzerland: International Organization for Standardization (ISO), 2014.
Kates M. Techniques of lipidology: Isolation, analysis and identification of lipids (Third 3rd Revised Edition). North-Holland Pub. Co., American Elsevier Publishing Co., Inc.-New York. 1972, 464 pages. Print ISBN: 978-0-444-80737-3
Miyazaki Y., Shibuya M., Sugawara H., Kawaguchi O., Hirose C., Nagatsu J., Esumi S. Salinomycin, a new polyether antibiotic. The Journal of Antibiotics, 1974, 27(11): 814-821. https://doi.org/10.7164/antibiotics.27.814
Migaki T.T., Babcock W. E. Safety evaluation of Salinomycin in broiler chickens reared in floor pens. Poultry Science, 1979, 58(2): 481–482. https://doi.org/10.3382/ps.0580481
Mehlhorn H., Ganster H. J., Raether W. Effect of salinomycin-Na on malaria parasites (Plasmodium falciparum and P. berghei). Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene. 1. Abt. Originale. A, Medizinische Mikrobiologie, Infektionskrankheiten und Parasitologie, 1984, 256(3): 305-313. https://doi.org/10.1016/S0174-3031(84)80007-4
Schneiter R., Daum, G. Analysis of yeast lipids. In: Yeast Protocol. Methods in Molecular Biology (W. Xiao Eds). Humana Press, Totowa, NJ, 2006, vol. 313, pp. 75-84, Print ISBN: 978-1-58829-437-1, Online ISBN: 978-1-59259-958-5, https://doi.org/10.1385/1-59259-958-3:075
Tyagi M., Patro B. S. Salinomycin reduces growth, proliferation and metastasis of cisplatin resistant breast cancer cells via NF-kB deregulation. Toxicology in Vitro, 2019, 60(10): 125-133. https://doi.org/10.1016/j.tiv.2019.05.004
Versini A., Saier L., Sindikubwabo F., Müller S., Cañeque T., Rodriguez, R. Chemical biology of salinomycin. Tetrahedron, 2018, 74 (39): 5585-5614. https://doi.org/10.1016/j.tet.2018.07.028
Volova T.G. Biotechnology (First Edition). [In Russian]. Publishing House of the Siberian Department of the Russian Academy of Sciences, Novosibirsk. 1999, 252 pages. Print ISBN: 5-7692-0204-1, Available at: http://www.fptl.ru/biblioteka/biotehnologiya/volova.pdf
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright Licensing Agency
Institutions based in the EU with a valid photocopying and/or digital license with the Copyright Licensing Agency may copy excerpts from books and journals published by the Academic Publishing House of the UFT Plovdiv under the terms of their license.
Copyright Clearance Center
Institutions based in the US with a valid photocopying and/or digital license with the Copyright Clearance Center may copy excerpts from books and journals published by the Academic Publishing House of the UFT Plovdiv under the terms of their license.
Other Territories: Please contact your local reproduction rights organization.
If you have any questions about the permitted uses of a specific article, please contact us.
Permissions Department of the Academic Publishing House of the UFT Plovdiv
Plovdiv 4002, 26 Maritsa Blvd., Bulgaria
E-mail: editor.in.chief@ijfsab.com
Tel.: +359 (32) 603-802
Fax: +359 32/ 644 102