Main Article Content

Nisha Suryawanshi Sweta Naik Satya Eswari Jujjawarapu


Production of exopolysaccharides (EPSs) has been reported in prokaryotes and eukaryotes. Microbial exopolysaccharides have increased interest as another category of microbial products utilized in the pharmaceutical, biomedical, and food industries. Investigators are considering replacing synthetic food stabilizers with organic ones by investigating EPS in fermentation-based dairy industries. Particularly for the enhancement of the rheology of fermented food items, EPS is being used. EPSs are considered a natural texturizer and a good alternative for other artificial or new biopolymers utilized in foodstuff as a gelling agent and for suspending and thickening food. These EPS are used abundantly in fermented food and dairy industrials for quality improvement. The main microbial exopolysaccharides viz. dextran, xanthan, pullulan, gellan, curdlan, and scleroglucan have a versatile reputation and various food processing applications in industries. The review discusses the distinctive physical properties of EPSs that mainly determine their application in food industries and the health benefits of EPSs.

Article Details


Ajalloueian F., Guerra P.R., Bahl M.I., Torp A.M., Hwu E.T., Licht T.R., Boisen A. Multi-layer PLGA-pullulan-PLGA electrospun nanofibers for probiotic delivery. Food Hydrocolloids, 2022, 123(2): 107112.

Aman A., Siddiqui N.N., Qader S.A.U. Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1. Carbohydrate Polymers, 2012, 87(1): 910-915.

Arena A., Maugeri T.L., Pavone B., Iannello D., Gugliandolo C., Bisignano G. Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. International Immunopharmacology, 2006, 6(1): 8-13.

Awad S., Hassan A., Halaweish F. Application of exopolysaccharide-producing cultures in reduced-fat Cheddar cheese: Composition and proteolysis. Journal of Dairy Science, 2005, 88(12): 4195-4203.

Bercea M., Biliuta G., Avadanei M., Baron R.I., Butnaru M., Coseri S. Self-healing hydrogels of oxidized pullulan and poly (vinyl alcohol). Carbohydrate Polymers, 2019, 206(2): 210-219.

Bhavani A.L., Nisha J. Dextran - the polysaccharide with versatile uses. International Journal of Pharma and Bio Sciences, 2010, 1(4): 569-573. Available at:

Broadbent J.R., McMahon D.J., Welker D.L., Oberg C.J., Moineau S. Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. Journal of Dairy Science, 2003, 86(2): 407-423.

Bylaite E., Adler-Nissen J., Meyer A.S. Effect of xanthan on flavor release from thickened viscous food model systems. Journal of Agricultural and Food Chemistry, 2005, 53(9): 3577-3583.

Cai Z., Zhang H. Recent progress on curdlan provided by functionalization strategies. Food Hydrocolloids, 2017, 68(8): 128-135.

Chen H., Jin Y., Ding X., Wu F., Bashari M., Chen F., Cui Z., Xu X. Improved the emulsion stability of phosvitin from hen egg yolk against different pH by the covalent attachment with dextran. Food Hydrocolloids, 2014, 39(8): 104-112.

Cheng K.-C., Demirci A., Catchmark J.M., Puri V.M. Modeling of pullulan fermentation by using a color variant strain of Aureobasidium pullulans. Journal of Food Engineering, 2010, 98(3): 353-359.

Cho S.S. Handbook of dietary fiber, (Fifth Edition). CRC Press, Taylor & Francis Group. 2001, 894 pages. eBook ISBN: 978-0429-20762-4

Costell E., Peyrolon M., Duran L. Note. Influence of texture and type of hydrocolloid on perception of basic tastes in carrageenan and gellan gels Nota. Influencia de la textura y del tipo de hidrocoloide en la percepción de los gustos fundamentales en geles de carragenato y de gelana. Food Science and Technology International, 2000, 6(6): 495-499.

Coviello T., Maeda H., Yuguchi Y., Urakawa H., Kajiwara K., Dentini M., Crescenzi V. Conformational characteristics of oxidized scleroglucan. Macromolecules, 1998, 31(5): 1602-1607.

Danalache F., Mata P., Moldão-Martins M., Alves V. D. Novel mango bars using gellan gum as a gelling agent: Rheological and microstructural studies. LWT-Food Science and Technology, 2015, 62(1): 576-583.

Das D., Baruah R., Goyal A. A food additive with prebiotic properties of an α-d-glucan from Lactobacillus plantarum DM5. International Journal of Biological Macromolecules, 2014, 69(8): 20-26.

De Godoy M.R., Kerr K.R., Fahey Jr G.C. Alternative dietary fiber sources in companion animal nutrition. Nutrients, 2013, 5(8): 3099-3117.

de Morais M.G., Stillings C., Dersch R., Rudisile M., Pranke P., Costa J.A.V., Wendorff J. Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresource Technology, 2010, 101(8): 2872-2876.

Degner B.M., Chung C., Schlegel V., Hutkins R., McClements D.J. Factors influencing the freeze‐thaw stability of emulsion‐based foods. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(2): 98-113.

Diantom A. Effect of formulation on physico-chemical properties, water status and stability of pasta, tomato sauce and ready to eat pasta meals. PhD thesis by Dipartimento di Scienze degli alimenti, Università degli Studi di Parma, 2016 [in English]

Donabedian D.H., McCarthy S.P. Acylation of pullulan by ring-opening of lactones. Macromolecules, 1998, 31(4): 1032-1039.

Eroglu E., Torun M., Dincer C., Topuz A. Influence of pullulan‐based edible coating on some quality properties of strawberry during cold storage. Packaging Technology and Science, 2014, 27(10): 831-838.

Farris S., Unalan I.U., Introzzi L., Fuentes‐Alventosa J.M., Cozzolino C.A. Pullulan‐based films and coatings for food packaging: present applications, emerging opportunities, and future challenges. Journal of Applied Polymer Science, 2014, 131(13): 40539.

Fenibo E.O., Ijoma G.N., Selvarajan R., Chikere C.B. Microbial surfactants: The next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms, 2019, 7(11): 7110581.

Funami T., Funami M., Tawada T., Nakao Y. Decreasing oil uptake of doughnuts during deep‐fat frying using curdlan. Journal of Food Science, 1999, 64(5): 883-888.

Galle S., Schwab C., Arendt E., Gänzle M. Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5834-5841.

Galle S., Schwab C., Dal Bello F., Coffey A., Gänzle M.G., Arendt E.K. Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. International Journal of Food Microbiology, 2012, 155(3): 105-112.

García M.C., Trujillo L.A., Muñoz J., Alfaro M.C. Gellan gum fluid gels: influence of the nature and concentration of gel-promoting ions on rheological properties. Colloid and Polymer Science, 2018, 296(11): 1741-1748.

Gniewosz M., Duszkiewicz-Reinhard W. Comparative studies on pullulan synthesis, melanin synthesis and morphology of white mutant Aureobasidium pullulans B-1 and parent strain Ap-3. Carbohydrate Polymers, 2008, 72(3): 431-438.

Göksungur Y., Uzunoğulları P., Dağbağli S. Optimization of pullulan production from hydrolysed potato starch waste by response surface methodology. Carbohydrate Polymers, 2011, 83(3): 1330-1337.

Imeson A.P. Thickening and gelling agents for food. Springer Science & Business Media, 2012. ISBN: 978-1-4615-3552-2, Available at:

Jansson P.-E., Lindberg B., Sandford P.A. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydrate Research, 1983, 124(1): 135-139.

Jeremiah L.E. Freezing effects on food quality. CRC Press, 2019. ISBN 9780367401405, Available at:

Jiang L. Optimization of fermentation conditions for pullulan production by Aureobasidium pullulan using response surface methodology. Carbohydrate Polymers, 2010, 79(2): 414-417.

Jindal N., Khattar J.S. Microbial Polysaccharides in Food Industry. In: Biopolymers for Food Design (A.M. Grumezescu and A.M. Holban EdS.). Elsevier, Academic Press. 2018. рр. 95-123, Print ISBN: 978-0-12-811449-0, Available at:,

Karim M.R., Lee H.W., Kim R., Ji B.C., Cho J.W., Son T.W., Oh W., Yeum J.H. Preparation and characterization of electrospun pullulan/montmorillonite nanofiber mats in aqueous solution. Carbohydrate Polymers, 2009, 78(2): 336-342.

Katina K., Maina N.H., Juvonen R., Flander L., Johansson L., Virkki L., Tenkanen M., Laitila A. In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiology, 2009, 26(7): 734-743.

Kennedy J., Bradshaw I. Production, properties and applications of xanthan. Progress in Industrial Microbiology, 1984, 19(3): 319-371.

Kirchmajer D.M., Steinhoff B., Warren H., Clark R., in het Panhuis M. Enhanced gelation properties of purified gellan gum. Carbohydrate Research, 2014, 388(3): 125-129.

Kishk Y.F., Al-Sayed H.M. Free-radical scavenging and antioxidative activities of some polysaccharides in emulsions. LWT-Food Science and Technology, 2007, 40(2): 270-277.

Kleber M., Eusterhues K., Keiluweit M., Mikutta C., Mikutta R., Nico P.S. Mineral–organic associations: Formation, properties, and relevance in soil environments. In: Advances in Agronomy (D.L. Sparks Ed)., Elsevier. 2015, 130, pp. 1-140. ISSN: 0065-2113

Kodali V.P., Sen R. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnology Journal: Healthcare Nutrition Technology, 2008, 3(2): 245-251.

Kycia K., Chlebowska-Śmigiel A., Szydłowska A., Sokół E., Ziarno M., Gniewosz M. Pullulan as a potential enhancer of Lactobacillus and Bifidobacterium viability in synbiotic low fat yoghurt and its sensory quality. LWT –Food Science and Technology, 2020, 128(6): 109414.

Lacaze G., Wick M., Cappelle S. Emerging fermentation technologies: development of novel sourdoughs. Food Microbiology, 2007, 24(2): 155-160.

Leathers T. D. Biotechnological production and applications of pullulan. Applied Microbiology and Biotechnology, 2003, 62(5-6): 468-473.

Leemhuis H., Pijning T., Dobruchowska J.M., van Leeuwen S.S., Kralj S., Dijkstra B.W., Dijkhuizen L. Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. Journal of Biotechnology, 2013, 163(2): 250-272.

Leone G., Consumi M., Pepi S., Pardini A., Bonechi C., Tamasi G., Donati A., Lamponi S., Rossi C., Magnani A. Enriched Gellan Gum hydrogel as visco-supplement. Carbohydrate Polymers, 2020, 227(1): 115347.

Liu Y., Zhao G., Zhao M., Ren J., Yang B. Improvement of functional properties of peanut protein isolate by conjugation with dextran through Maillard reaction. Food Chemistry, 2012, 131(3): 901-906.

Liu Z., Jiao Y., Lu H., Shu X., Chen Q. Chemical characterization, antioxidant properties and anticancer activity of exopolysaccharides from Floccularia luteovirens. Carbohydrate Polymers, 2020, 229(2): 115432.

Lopez E.C., Champion D., Blond G., Le Meste M. Influence of dextran, pullulan and gum arabic on the physical properties of frozen sucrose solutions. Carbohydrate Polymers, 2005, 59(1): 83-91.

Lorenzo G., Zaritzky N., Califano A. Rheological analysis of emulsion-filled gels based on high acyl gellan gum. Food Hydrocolloids, 2013, 30(2): 672-680.

Madhavan Nampoothiri K., Studies on exopolysaccharide production by probiotic lactic acid bacteria. PhD thesis by Biotechnology Division, National Institute for Interdisciplinary Science and (CSIR), Thiruvananthapuram, 2012 [in English]

Maina N.H., Virkki L., Pynnönen H., Maaheimo H., Tenkanen M. Structural analysis of enzyme-resistant isomaltooligosaccharides reveals the elongation of α-(1→3)-linked branches in Weissella confusa dextran. Biomacromolecules, 2011, 12(2): 409-418.

Margaritis A. Biotechology review: mixing, mass transfer, and scale-up of polysaccharide fermentations. Biotechnology & Bioengineering, 1978, 20(7): 977-993.

Martins S.I., Jongen W.M., Van Boekel M.A. A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, 2000, 11(9-10): 364-373.

McIntosh M., Stone B., Stanisich V. Curdlan and other bacterial (1→3)-β-D-glucans. Applied Microbiology and Biotechnology, 2005, 68(2): 163-173.

Mende S., Peter M., Bartels K., Dong T., Rohm H., Jaros D. Concentration dependent effects of dextran on the physical properties of acid milk gels. Carbohydrate Polymers, 2013, 98(2): 1389-1396.

Mende S., Rohm H., Jaros D. Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. International Dairy Journal, 2016, 52(1): 57-71.

Mollakhalili Meybodi N., Mohammadifar M. Microbial exopolysaccharides: a review of their function and application in food sciences. Journal of Food Quality and Hazards Control, 2015, 2(4): 112-117. Available at:

Morris E.R. Rheological and organoleptic properties of food hydrocolloids. In: Food Hydrocolloids (K. Nishinari, E. Doi Eds.). Springer. 1994, pp. 201-210. Print ISBN: 978-1-4613-6059-9, Online ISBN: 978-1-4615-2486-1,

Morris E.R., Nishinari K., Rinaudo M. Gelation of gellan - a review. Food Hydrocolloids, 2012, 28(2): 373-411.

Morris G., Harding S. Polysaccharides, microbial. In: Encyclopedia of Microbiology (Third Edition) (M. Schaechter Ed.). Elsevier Inc. 2009, pp. 482-494. ISBN: 978-0-12-373944-5

Naessens M., Cerdobbel A., Soetaert W., Vandamme E.J. Leuconostoc dextransucrase and dextran: production, properties and applications. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2005, 80(8): 845-860.

Ni Y., Tang X., Fan L. Improvement in physical and thermal stability of cloudy ginkgo beverage during autoclave sterilization: Effects of microcrystalline cellulose and gellan gum. LWT – Food Science and Technology, 2021, 135(1): 110062.

Nishinari K., Zhang H. Recent advances in the understanding of heat set gelling polysaccharides. Trends in Food Science & Technology, 2004, 15(6): 305-312.

Nishinari K., Zhang H., Funami T. Curdlan. In: Handbook of Hydrocolloids (Third Edition). (G.O. Phillips, P.A. Williams Eds.), Woodhead Publishing Series in Food Science, Technology and Nutrition, Elsevier. 2021, pp. 887-921, ISBN: 978-0-12-820104-6,

Nouvel C., Dubois P., Dellacherie E., Six J.-L. Silylation reaction of dextran: Effect of experimental conditions on silylation yield, regioselectivity, and chemical stability of silylated dextrans. Biomacromolecules, 2003, 4(5): 1443-1450.

Nwodo U.U., Green E., Okoh A.I. Bacterial exopolysaccharides: functionality and prospects. International Journal of Molecular Sciences, 2012, 13(11): 14002-14015.

O'Neill M.A., Selvendran R.R., Morris V.J. Structure of the acidic extracellular gelling polysaccharide produced by Pseudomonas elodea. Carbohydrate Research, 1983, 124(1): 123-133.

Oğuzhan P., Yangılar F. Pullulan: production and usage in food ındustry. African Journal of Food Science and Technology, 2013, 4(3): 2141-5455. Available at:

Okiror G.P., Jones C.L. Effect of temperature on the dielectric properties of low acyl gellan gel. Journal of Food Engineering, 2012, 113(1): 151-155.

Olano-Martin E., Mountzouris K.C., Gibson G.R., Rastall R.A. In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. British Journal of Nutrition, 2000, 83(3): 247-255.

Oliver C.M., Melton L.D., Stanley R.A. Creating proteins with novel functionality via the Maillard reaction: a review. Critical Reviews in Food Science and Nutrition, 2006, 46(4): 337-350.

Palaniraj A., Jayaraman V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, 2011, 106(1): 1-12.

Paquet É., Hussain R., Bazinet L., Makhlouf J., Lemieux S., Turgeon S.L. Effect of processing treatments and storage conditions on stability of fruit juice based beverages enriched with dietary fibers alone and in mixture with xanthan gum." LWT-Food Science and Technology, 2014, 55(1): 131-138.

Patel S., Kasoju N., Bora U., Goyal A. Structural analysis and biomedical applications of dextran produced by a new isolate Pediococcus pentosaceus screened from biodiversity hot spot Assam. Bioresource Technology, 2010, 101(17): 6852-6855.

Poli A., Di Donato P., Abbamondi G.R., Nicolaus B. Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxy-alkanoates by archaea. Archaea, 2011, 2011(10): 693253.

Prameela K., Mohan C.M., Ramakrishna C. Biopolymers for Food Design: Consumer-Friendly Natural Ingredients. In: Biopolymers for Food Design. Handbook of Food Bioengineering (A.M. Grumezescu, A.M. Holban Eds.). Elsevier. 2018, pp. 1-32, ISBN: 978-0-12-811449-0,

Ramawat K.G., Mérillon J.-M. Polysaccharides: Bioactivity and Biotechnology (K.G. Ramawat, J.-M. Mérillon Eds.). Springer, Heidelberg, 2015, рр. 1-2241, Print ISBN: 978-3-319-16299-7, eBook ISBN: 978-3-319-16298-0,

Rao T.J.M., Goyal A. A novel high dextran yielding Weissella cibaria JAG8 for cereal food application. International Journal of Food Sciences and Nutrition, 2013, 64(3): 346-354.

Rosalam S., England R. Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzyme and Microbial Technology, 2006, 39(2): 197-207.

Sahana T., Fathimath Sadiya M., Rekha P. Emulsifying and Cell Proliferative Abilities of the Exopolysaccharide Produced by Leguminous Plant Nodule Associated Bacterium Cronobacter sp. Journal of Polymers and the Environment, 2018, 26(8): 3382-3388.

Sarbini S.R., Kolida S., Deaville E.R., Gibson G.R., Rastall R.A. Potential of novel dextran oligosaccharides as prebiotics for obesity management through in vitro experimentation. British Journal of Nutrition, 2014, 112(8): 1303-1314.

Sarbini S.R., Kolida S., Naeye T., Einerhand A.W., Gibson G.R., Rastall R.A. The prebiotic effect of α-1, 2 branched, low molecular weight dextran in the batch and continuous faecal fermentation system. Journal of Functional Foods, 2013, 5(4): 1938-1946.

Schmid J., Meyer V., Sieber V. Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Applied Microbiology and Biotechnology, 2011, 91(4): 937-947.

Schwab C., Mastrangelo M., Corsetti A., Gänzle M. Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in sorghum sourdoughs. Cereal Chemistry, 2008, 85(5): 679-684.

Shukla A., Mehta K., Parmar J., Pandya J., Saraf M. Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell. European Polymer Journal, 2019, 119(10): 298-310.

Singh R., Saini G. Biosynthesis of Pullulan and its Applications in Food and Pharmaceutical Industry. In: Microorganisms in Sustainable Agriculture and Biotechnology, (A.M. Grumezescu, A.M. Holban Eds.). Springer. 2012, pp. 509-553, Print ISBN: 978-94-007-2213-2, Online ISBN: 978-94-007-2214-9,

Singh R.S., Saini G.K., Kennedy J.F. Covalent immobilization and thermodynamic characterization of pullulanase for the hydrolysis of pullulan in batch system. Carbohydrate Polymers, 2010, 81(2): 252-259.

Singh R.S., Saini G.K., Kennedy J.F. Continuous hydrolysis of pullulan using covalently immobilized pullulanase in a packed bed reactor. Carbohydrate Polymers, 2011, 83(2): 672-675.

Spotti M.J., Martinez M.J., Pilosof A.M., Candioti M., Rubiolo A.C., Carrara C.R. Influence of Maillard conjugation on structural characteristics and rheological properties of whey protein/dextran systems. Food Hydrocolloids, 2014, 39(8): 223-230.

Srisuk P., Berti F.V., da Silva L.P., Marques A.P., Reis R.L., Correlo V.M. Electroactive gellan gum/ polyaniline spongy-like hydrogels. ACS Biomaterials Science & Engineering, 2018, 4(5): 1779-1787.

Survase S.A., Saudagar P.S., Bajaj I.B., Singhal R.S. Scleroglucan: fermentative production, downstream processing and applications. Food Technology and Biotechnology, 2007, 45(2): 107-118. Available at:

Sworn, G. Xanthan gum. In: Handbook of Hydrocolloids (Third Edition). Woodhead Publishing Series in Food Science, Technology and Nutrition (G.O. Phillips, P.A. Williams Eds.). Elsevier. 2021, pp. 833-853, ISBN: 978-0-12-820104-6

Sworn G., Stouby L. Gellan gum. In: Handbook of Hydrocolloids (Third Edition). Woodhead Publishing Series in Food Science, Technology and Nutrition (G.O. Phillips, P.A. Williams Eds.). Elsevier. 2021, pp. 855-885, ISBN: 978-0-12-820104-6

Tabibloghmany F.S., Ehsandoost E. An overview of healthy and functionality of exopolysaccharides produced by lactic acid bacteria in the dairy industry. European Journal of Nutrition and Food Safety, 2014, 4(2): 63-86.

Tavassoli-Kafrani E., Shekarchizadeh H., Masoudpour-Behabadi M. Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, 2016, 137(2): 360-374.

Tingirikari J.M.R., Kothari D., Goyal A. Superior prebiotic and physicochemical properties of novel dextran from Weissella cibaria JAG8 for potential food applications." Food & Function, 2014, 5(9): 2324-2330.

Tiwari S., Kavitake D., Devi P.B., Shetty P.H. Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt. International Journal of Biological Macromolecules, 2021, 183(7): 1585-1595.

Trinetta V., Cutter C. Pullulan: A Suitable Biopolymer for Antimicrobial Food Packaging Applications. In: Antimicrobial Food Packaging (J. Barros-Velázquez Ed.). Elsevier. 2016, pp. 385-397. ISBN: 978-0-12-800723-5

Upadhyay K.H., Vaishnav A.M., Tipre D.R., Dave S.R. Diversity assessment and EPS production potential of cultivable bacteria from the samples of coastal site of Alang. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 6(1): 661-666.

Varshosaz, J. Dextran conjugates in drug delivery. Expert Opinion on Drug Delivery, 2012, 9(5): 509-523.

Verma D.K., Niamah A.K., Patel A.R., Thakur M., Sandhu K.S., Chávez-González M.L., Shah N., Aguilar C.N. Chemistry and microbial sources of curdlan with potential application and safety regulations as prebiotic in food and health. Food Research International, 2020, 133(10): 109136.

Viñarta S.C., Molina O.E., Figueroa L., Fariña J. A further insight into the practical applications of exopolysaccharides from Sclerotium rolfsii. Food Hydrocolloids, 2006, 20(5): 619-629.

Welman A.D., Maddox I.S. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends in Biotechnology, 2003, 21(6): 269-274.

Wolf B.W. Use of pullulan as a slowly digested carbohydrate, US Patent No US6916796B2, 2005.

Wolter A., Hager A.-S., Zannini E., Czerny M., Arendt E.K. Influence of dextran-producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads. International Journal of Food Microbiology, 2014, 172(2): 83-91.

Wu S., Chen J., Pan S. Optimization of fermentation conditions for the production of pullulan by a new strain of Aureobasidium pullulans isolated from sea mud and its characterization. Carbohydrate Polymers, 2012, 87(2): 1696-1700.

Wu S., Jin Z., Tong Q., Chen H. Sweet potato: A novel substrate for pullulan production by Aureobasidium pullulans. Carbohydrate Polymers, 2009, 76(4): 645-649.

Xiao Q., Lim L.-T., Tong Q. Properties of pullulan-based blend films as affected by alginate content and relative humidity. Carbohydrate Polymers, 2012, 87(1): 227-234.

Xiao Q., Tong Q., Lim T. Pullulan-sodium alginate based edible films: Rheological properties of film forming solutions. Carbohydrate Polymers, 2012, 87(2): 1689-1695.

Xin, Y., Lee J.Y., Kim J., Kim Y. Effect of curdlan on textural and cooking qualities of noodles made with tofu. Journal of Food Processing and Preservation, 2018, 42(8): e13661.

Yuen S. Pullulan and its applications. Process Biochemistry, 1974, 9(9): 7-9.

Zhang D., Chen L., Cai J., Dong Q., Din Z.-u., Hu Z.-Z., Wang G.-Z., Ding W.-P., He J.-R., Cheng S.-Y. Starch/tea polyphenols nanofibrous films for food packaging application: From facile construction to enhance mechanical, antioxidant and hydrophobic properties. Food Chemistry, 2021, 360(10): 129922.

Zhang H., Zhang F., Yuan R. Applications of natural polymer-based hydrogels in the food industry. In: Hydrogels Based on Natural Polymers (Yu Chen Ed.). Elsevier. 2020, pp. 357-410. ISBN: 978-0-12-816421-1 10.1016/B978-0-12-816421-1.00015-X

Zhang J.-B., Wu N.-N., Yang X.-Q., He X.-T., Wang L.-J. Improvement of emulsifying properties of Maillard reaction products from β-conglycinin and dextran using controlled enzymatic hydrolysis. Food Hydrocolloids, 2012, 28(2): 301-312.

Zhang R., Edgar K.J. Properties, chemistry, and applications of the bioactive polysaccharide curdlan. Biomacromolecules, 2014, 15(4): 1079-1096.

Zhang X., Liu D., Jin T.Z., Chen W., He Q., Zou Z., Zhao H., Ye X., Guo M. Preparation and characterization of gellan gum-chitosan polyelectrolyte complex films with the incorporation of thyme essential oil nanoemulsion. Food Hydrocolloids, 2021, 114(5): 106570.

Zhu D., Damodaran S., Lucey J.A. Physicochemical and emulsifying properties of whey protein isolate (WPI) - dextran conjugates produced in aqueous solution. Journal of Agricultural and Food Chemistry, 2010, 58(5): 2988-2994.

Zhu J., Wang Q., Han L., Zhang C., Wang Y., Tu K., Peng J., Wang J., Pan L. Effects of caprolactam content on curdlan-based food packaging film and detection by infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 45(1): 118942.

Zia K.M., Tabasum S., Khan M.F., Akram N., Akhter N., Noreen A., Zuber M. Recent trends on gellan gum blends with natural and synthetic polymers: A review. International Journal of Biological Macromolecules, 2018, 109(4): 1068-1087.

How to Cite
SURYAWANSHI, Nisha; NAIK, Sweta; JUJJAWARAPU, Satya Eswari. Exopolysaccharides and their Applications in Food Processing Industries. Food Science and Applied Biotechnology, [S.l.], v. 5, n. 1, p. 22-44, mar. 2022. ISSN 2603-3380. Available at: <>. Date accessed: 22 may 2022. doi: