Antifungal properties of SiO$_2$/hydroxypropyl cellulose hybrid materials doped with zinc ions against *Candida albicans* 74

Tsvelentina Angelova1, Nadezhda Rangelova2, Nelly Georgieva1

1University of Chemical Technology and Metallurgy, Department of Biotechnology, 8 St. Kliment Ohridski Blvd, 1756 Sofia, Bulgaria

2University of Chemical Technology and Metallurgy, Department of Fundamentals of Chemical Technology, 8 St. Kliment Ohridski Blvd, 1756 Sofia, Bulgaria

Abstract

This study presents an investigation of antifungal properties of hybrid materials based on silica, hydroxypropyl cellulose and ZnSO$_4$·7H$_2$O. The hybrid materials were synthesized by sol-gel technique and as a source of silica was used tetraethylortho silicate (TEOS). The quantity of organic substance was 5 wt. % and the zinc concentration varied from 0.5 to 5 wt. %. The strain that was used for determination of potential antifungal activity of materials was *Candida albicans* 74. The first experiment was focused on counting the survived cells after contact of fungi and materials with different zinc concentrations. The results show that the zinc amount and the cultivation time influence the number of colonies. The second method was based on measuring the free zone of fungal growth formed around well with materials. It was examined that the zone size depends on the amount of zinc ions in the materials. Practical applications: Metals such as silver, gold, copper and zinc are well known for their antibacterial activities and can be stabilized as nanoparticles by including in different polymers or hybrid materials with organic or inorganic nature. These materials can be used as coating layers on prostheses or catheters used in medical practice. They could be modified and used as facemasks, tissue paper, etc. in health centers. The broad spectrum antibacterial and antifungal activities of hybrid materials would be useful in preventing environmental contaminations on surfaces such as door handles, light switches and others in healthcare environments.

Keywords: Cellulose derivates, SiO$_2$, Zinc ions, *Candida albicans* 74

Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPC</td>
<td>Hydroxypropyl cellulose</td>
</tr>
<tr>
<td>NPs</td>
<td>Nanoparticles</td>
</tr>
<tr>
<td>TEOS</td>
<td>Tetraethylortho silicate</td>
</tr>
</tbody>
</table>

Corresponding author: Dr. Tsvelentina Georgieva Angelova; Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd, Sofia, Bulgaria, tel.: +35928163314, E-mail: tsvelentina_angelova@uctm.edu

Article history:

Received 5 June 2018
Reviewed 23 July 2018
Accepted 8 September 2018
Available on-line 10 October 2018

© 2018 The Authors. UFT Academic publishing house, Plovdiv
Introduction

Nanotechnology offers the possibilities of great advancements in a variety of industries by manipulating materials on the atomic or molecular level and thus obtain novel characteristics and functions of smaller constructed materials (Meyer et al. 2002). The introduction of novel powerful antimicrobial agents is of great importance for the control of pathogenic bacteria (Tayel et al. 2011). Recent studies have demonstrated antimicrobial activities of various materials, containing nanoparticles (NPs) as silver (Angelova et al. 2012), copper (Cioffi et al. 2005), titanium dioxide (Kwak et al. 2001). The mechanism of the inhibitory effect of Zn nanoparticles on microorganisms is not fully understood. Preliminary studies show that the antibacterial activity of ZnO NPs might be related to the formation of free radicals on the surface of the NPs, and the damage to the lipids in bacterial cell membrane by free radicals, which consequently lead to the leakage and breakdown of bacterial cell membrane (Brayner et al. 2006; Reddy et al. 2007). The effect and mode of action of ZnO NPs on the growth of fungi is studied by He et al. 2011. They suggest that ZnO NPs may affect cell functions and finally cause the increase of nucleic acid contents. The increase of nucleic acid may due to stress response of fungal hyphae. The increase of carbohydrates may be due to the self-protecting mechanism against the ZnO NPs (Alvarez-Peral et al. 2002). In this study we examined the antimicrobial effect of SiO2 based hybrid nanomaterials with cellulose ethers and zinc ions against Candida albicans 74

Materials and Methods

Materials. Hydroxypropyl cellulose (HPC), tetraethylorthosilicate (TEOS) and zinc sulfate (ZnSO4.7H2O) were purchased from Sigma-Aldrich Chemie GmbH and sulfuric acid was from Merck, (Darmstadt, Germany). All chemicals were used as received without any further purification. The strain Candida albicans 74 was obtained from the culture collection of Bulgarian National Bank of Industrial Microorganisms and Cell Cultures and was maintained on nutrient YM medium, containing Yeast extract 3 g, Malt extract 3 g, Peptone 5 g, Glucose 10 g, Agar 15 g, d. H2O 1 dm3. The strain was cultivated at 30°C.

Methods.

- Synthesis of HPC/SiO2 hybrid materials doped with zinc ions. Hybrid materials were prepared by sol-gel technology. It is a quite used technique and needs simple equipment. Materials contained TEOS and 5 wt.% HPC and zinc with concentration from 0 wt % to 5 wt %. The procedure for hybrid preparation has been described in details elsewhere (Rangelova et al. 2014).

- Method based on quantitative determination of survived cells after contact with materials. The main point of this experiment is studying the ability of materials to influence the growth rate of culture after different period of incubation. The scheme of procedure is shown on Fig.1.

To each flask containing 30 ml saline solution was added 100 μl culture and after one hour 0.05 g of materials in form of powder. The process was performed on a rotary shaker (220 rpm) at 30°C. Samples were taken after 3, 5 and 24 h, they were diluted 10⁻¹, 10⁻² and 10⁻³, and 50 μl of each dilution was spread on agar surface. The following step is incubation of petri dishes and counting the number of colonies from each dilution on the plate. To evaluate the antifungal effect of investigated hybrid materials, the percentage of cell reduction was calculated as described by Riverro et al. 2011.

- Method based on diffusion of materials into agar and formation of inhibition zones. The method consists in formation of a clear zone (restricted microbial growth) around hybrids. Petri dishes with agar medium were inoculated with 100 μl fresh culture of C. albicans 74. After 30 min of...
Hybrid materials were evaluated for their antifungal properties against Candida albicans 74 (Georgieva et al. 2015). In presence of 2.5 wt.% zinc ions the materials reduced the fungal growth with 75.8%. The second experiment considers the question for possibility of materials to form zones free of fungi growth. Using the agar well diffusion method, the hybrid materials supplied with different zinc concentrations showed a significant effect of fungi inhibition. After 24 h cultivation it was observed that hybrid materials doped with zinc proved clear zone of inhibition around the materials (Table 1).

Table 1. Antifungal test results of C. albicans 74 after 24 h cultivation.

<table>
<thead>
<tr>
<th>Zn [wt. %]</th>
<th>SiO$_2$/HPC/ZnSO$_4$.7H$_2$O</th>
<th>Reduction of cells [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.8x103</td>
<td>-</td>
</tr>
<tr>
<td>0.5</td>
<td>2.3x103</td>
<td>60.4%</td>
</tr>
<tr>
<td>2.5</td>
<td>1.4x103</td>
<td>75.8%</td>
</tr>
<tr>
<td>5</td>
<td>1x103</td>
<td>82.7%</td>
</tr>
</tbody>
</table>

The sample with the highest 5 wt.% zinc concentration showed the clearest and biggest zone of inhibition – 11.75 mm. The potential of materials to prove antimicrobial effect decrease with small zinc concentrations. The results reveal that 2.5 wt.% Zn formed an inhibitory zone of 7.25 mm. The lowest concentration – 0.5 wt.% - can’t influence the strain growth and it was impossible to measure any free zones (Fig. 4). It was established that size zone depended on the zinc concentration.
Figure 4. Inhibition zones of C. albicans 74 around the SiO2/HPC hybrid materials with different ZnSO4.7H2O concentrations.

Conclusions

The investigated SiO2/HPC hybrid materials doped with zinc ions demonstrated pronounced antimicrobial activity against Candida albicans 74. It was demonstrated that increasing zinc concentrations up to 5wt.% led to larger inhibition zones around the materials and showed 82.7% reduction of cells. The investigated materials reveal good antibacterial and antimicrobial effect but further experiments are needed to confirm their non-toxicity activity against mammalian cells and they could be a promising candidate for future biomedical application. But tools and techniques are needed to be investigated for differentiation between particle-induced toxicity and dissolved Zn2+ effects.

Acknowledgements

The present study was supported by Project No 11679 of University of Chemical Technology and Metallurgy, Sofia, Science Fund “Research Investigations”.

References

Angelova et al., 2018

Antifungal properties of SiO2/hydroxypropyl cellulose ...